Abstract

A novel solar-assisted combined power and cooling system comprising a parabolic trough collector (PTC) assisted organic Rankine cycle (ORC) and ejector-absorption cooling cycle (EARC) is presented and analyzed in this paper. The use of Ammonia-Lithium Nitrate (NH3-LiNO3) as the working pair in EARC is investigated. First and second law thermodynamics analysis revealed that PTC accounted for 60–80% of the total exergy destruction. Using different ORC fluids revealed that Toluene showed the best performance. The energy utilization factor of Toluene is found to be 25.31% at turbine inlet temperature of 550 K and solar irradiation of 1 kW/m2, whereas for other ORC fluids like R134a (tetrafluoroethane, CH2FCF3), R245fa (pentafluoropropane, CF3CH2CHF2), n-pentane, R410a (near azeotropic mixture of difluoromethane, CH2F2 and pentafluoroethane, C2HF5), it was found to be 17–20%. The exergy efficiency of the combined system using Toluene has reached up to 17%, while the rest of the ORC fluids exhibited 8–12% exergy efficiency. The pump power consumption was significantly reduced due to the use of the ejector in the EARC. Generator temperature and solution heat exchanger (SHX) effectiveness were also found to highly influence the performance of the refrigeration system.

References

1.
Constantino
,
G.
,
Freitas
,
M.
,
Fidelis
,
N.
,
Pereira
,
M.
,
Constantino
,
G.
,
Freitas
,
M.
,
Fidelis
,
N.
, and
Pereira
,
M. G.
,
2018
, “
Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts
,”
Energies
,
11
(
10
), p.
2806
.
2.
Damoom
,
M. M.
,
Hashim
,
S.
,
Aljohani
,
M. S.
, and
Saleh
,
M. A.
,
2018
, “
Adding Sustainable Sources to the Saudi Arabian Electricity Sector
,”
Electr. J.
,
31
(
4
), pp.
20
28
.
3.
Demirbas
,
A.
,
Hashem
,
A. A.
, and
Bakhsh
,
A. A.
,
2017
, “
The Cost Analysis of Electric Power Generation in Saudi Arabia
,”
Energy Sources B: Econ. Plan. Policy
,
12
(
6
), pp.
591
596
.
4.
Rambo
,
K. A.
,
Warsinger
,
D. M.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2017
, “
Water-Energy Nexus in Saudi Arabia
,”
Energy Procedia
,
105
, pp.
3837
3843
.
5.
Said
,
S. A. M.
,
Spindler
,
K.
,
El-Shaarawi
,
M. A.
,
Siddiqui
,
M. U.
,
Schmid
,
F.
,
Bierling
,
B.
, and
Khan
,
M. M. A.
,
2016
, “
Design, Construction and Operation of a Solar Powered Ammonia-Water Absorption Refrigeration System in Saudi Arabia
,”
Int. J. Refrig.
,
62
, pp.
222
231
.
6.
Almasoud
,
A. H.
, and
Gandayh
,
H. M.
,
2015
, “
Future of Solar Energy in Saudi Arabia
,”
J. King Saud Univ.- Eng. Sci.
,
27
(
2
), pp.
153
157
.
7.
Nemati
,
A.
,
Nami
,
H.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2017
, “
A Comparative Thermodynamic Analysis of ORC and Kalina Cycles for Waste Heat Recovery: A Case Study for CGAM Cogeneration System
,”
Case Stud. Therm. Eng.
,
9
, pp.
1
13
.
8.
Mondejar
,
M. E.
,
Andreasen
,
J. G.
,
Regidor
,
M.
,
Riva
,
S.
,
Kontogeorgis
,
G.
,
Persico
,
G.
, and
Haglind
,
F.
,
2017
, “
Prospects of the Use of Nanofluids as Working Fluids for Organic Rankine Cycle Power Systems
,”
Energy Proc.
,
129
, pp.
160
167
.
9.
Girgin
,
I.
, and
Ezgi
,
C.
,
2017
, “
Design and Thermodynamic and Thermoeconomic Analysis of an Organic Rankine Cycle for Naval Surface Ship Applications
,”
Energy Convers. Manage.
,
148
, pp.
623
634
.
10.
Mahmoudi
,
A.
,
Fazli
,
M.
, and
Morad
,
M. R.
,
2018
, “
A Recent Review of Waste Heat Recovery by Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
143
(
7
), pp.
660
675
.
11.
Quoilin
,
S.
,
2008
,
An Introduction to Thermodynamics Applied to Organic Rankine Cycle
,
Massachusetts Institute of Technology
,
Cambridge, MA
. https://orbi.uliege.be/handle/2268/138797, Accessed January 26, 2019.
12.
Li
,
G.
,
2019
, “
Organic Rankine Cycle Environmental Impact Investigation Under Various Working Fluids and Heat Domains Concerning Refrigerant Leakage Rates
,”
Int. J. Environ. Sci. Technol.
,
16
(
1
), pp.
431
450
.
13.
Anon
,
2008
, “
Concentrating Solar Power Projects
,” https://solarpaces.nrel.gov/sites/default/files/project-export.csv, Accessed December 15, 2018.
14.
Ballestrín
,
J.
,
Burgess
,
G.
, and
Cumpston
,
J.
,
2012
, “Heat Flux and Temperature Measurement Technologies for Concentrating Solar Power (CSP),”
Concentrating Solar Power Technology
,
K.
Lovegrove
, and
W.
Stein
, eds.,
Woodhead Publishing Series in Energy
,
Philadelphia, PA
, pp.
577
601
.
15.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Daily, Monthly and Yearly Performance of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
517
529
.
16.
Cascio
,
E. L.
,
Ma
,
Z.
, and
Schenone
,
C.
,
2018
, “
Performance Assessment of a Novel Natural Gas Pressure Reduction Station Equipped With Parabolic Trough Solar Collectors
,”
Renewable Energy
,
128
, pp.
177
187
.
17.
Mehrpooya
,
M.
,
Tosang
,
E.
, and
Dadak
,
A.
,
2018
, “
Investigation of a Combined Cycle Power Plant Coupled With a Parabolic Trough Solar Field and High Temperature Energy Storage System
,”
Energy Convers. Manage.
,
171
(
6
), pp.
1662
1674
.
18.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of Linear Solar Concentrating Technologies for Greek Climate
,”
Energy Convers. Manage.
,
171
(
6
), pp.
1502
1513
.
19.
Tartière
,
T.
, and
Astolfi
,
M.
,
2017
, “
A World Overview of the Organic Rankine Cycle Market
,”
Energy Proc.
,
129
, pp.
2
9
. First Appeared in IV International Seminar on ORC Power Systems, ORC2017, Sept. 13–15, Milano, Italy.
20.
Dincer
,
I.
, and
Ratlamwala
,
T. A. H.
,
2016
,
Integrated Absorption Refrigeration Systems: Comparative Energy and Exergy Analyses, (Part of the Green Energy and Technology Book Series (GREEN))
,
Springer
,
New York
, pp.
47
69
.
21.
Farshi
,
L. G.
,
Infante Ferreira
,
C. A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2014
, “
First and Second Law Analysis of Ammonia/Salt Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
40
, pp.
111
121
.
22.
Sözen
,
A.
,
Özalp
,
M.
, and
Arcaklioǧlu
,
E.
,
2004
, “
Prospects for Utilisation of Solar Driven Ejector-Absorption Cooling System in Turkey
,”
Appl. Therm. Eng.
,
24
(
7
), pp.
1019
1035
.
23.
Garousi Farshi
,
L.
,
Mosaffa
,
A. H.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2014
, “
Thermodynamic Analysis and Comparison of Combined Ejector–Absorption and Single Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
133
, pp.
335
346
.
24.
Vereda
,
C.
,
Ventas
,
R.
,
Lecuona
,
A.
, and
Venegas
,
M.
,
2012
, “
Study of an Ejector-Absorption Refrigeration Cycle With an Adaptable Ejector Nozzle for Different Working Conditions
,”
Appl. Energy
,
97
, pp.
305
312
.
25.
Ventas
,
R.
,
Vereda
,
C.
,
Lecuona
,
A.
, and
Venegas
,
M.
,
2012
, “
Experimental Study of a Thermochemical Compressor for an Absorption/Compression Hybrid Cycle
,”
Appl. Energy
,
97
, pp.
297
304
.
26.
Patel
,
B.
,
Desai
,
N. B.
, and
Kachhwaha
,
S. S.
,
2017
, “
Optimization of Waste Heat Based Organic Rankine Cycle Powered Cascaded Vapor Compression-Absorption Refrigeration System
,”
Energy Convers. Manage.
,
154
(
3
), pp.
576
590
.
27.
Tashtoush
,
B. M.
,
Al-Nimr
,
M. A.
, and
Khasawneh
,
M. A.
,
2019
, “
A Comprehensive Review of Ejector Design, Performance, and Applications
,”
Appl. Energy
,
240
, pp.
138
172
.
28.
Besagni
,
G.
,
Mereu
,
R.
, and
Inzoli
,
F.
,
2016
, “
Ejector Refrigeration: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
373
407
.
29.
Sözen
,
A.
, and
Yücesu
,
H. S.
,
2007
, “
Performance Improvement of Absorption Heat Transformer
,”
Renewable Energy
,
32
(
2
), pp.
267
284
.
30.
Little
,
A. B.
, and
Garimella
,
S.
,
2011
, “
A Review of Ejector Technology for Refrigeration Applications
,”
Int. J. Air-Conditioning Refrig.
,
19
(
1
), pp.
1
15
.
31.
Levy
,
A.
,
Jelinek
,
M.
, and
Borde
,
I.
,
2002
, “
Numerical Study on the Design Parameters of a Jet Ejector for Absorption Systems
,”
Appl. Energy
,
72
(
2
), pp.
467
478
.
32.
Jelinek
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2012
, “
Performance of a Triple-Pressure Level Absorption/Compression Cycle
,”
Appl. Therm. Eng.
,
42
, pp.
2
5
.
33.
Sun
,
D.-W.
,
Eames
,
I. W.
, and
Aphornratana
,
S.
,
1996
, “
Evaluation of a Novel Combined Ejector-Absorption Refrigeration Cycle—I: Computer Simulation
,”
Int. J. Refrig.
,
19
(
3
), pp.
172
180
.
34.
Abed
,
K. A.
,
Amin
,
A. M.
,
El-Samahy
,
A. A.
, and
Shaaban
,
A. M.
,
2018
, “
Modeling and Simulation of Multi Purposes Concentrated Solar Power System
,”
Eur. J. Adv. Eng. Technol.
,
5
(
6
), pp.
375
385
.
35.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of Solar Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), pp.
1
38
.
36.
Chowdhury
,
M. T.
,
2018
, “
Solar Assisted Combined Power and Cooling System—KFUPM eprints
.” https://eprints.kfupm.edu.sa/id/eprint/140974/. Accessed March 20, 2021.
37.
Chowdhury
,
T.
,
and Mokheimer
,
M.
, and
A
,
E. M.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
38.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
A Detailed Exergetic Analysis of Parabolic Trough Collectors
,”
Energy Convers. Manage.
,
149
, pp.
275
292
.
39.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
40.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
41.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Analytical Expression of Parabolic Trough Solar Collector Performance
,”
Designs
,
2
(
1
), p.
9
.
42.
Sun
,
W.
,
Yue
,
X.
, and
Wang
,
Y.
,
2017
, “
Exergy Efficiency Analysis of ORC (Organic Rankine Cycle) and ORC-Based Combined Cycles Driven by Low-Temperature Waste Heat
,”
Energy Convers. Manage.
,
135
, pp.
63
73
.
43.
Herold
,
K. E.
,
Radermacher
,
R.
, and
Klein
,
S. A.
,
2016
,
Absorption Chillers and Heat Pumps
,
CRC Press
,
Boca Raton, FL
.
44.
Dincer
,
I.
,
2017
, “Refrigeration Cycles and Systems,”
Refrigeration Systems and Applications
,
John Wiley & Sons
,
New York
.
45.
Shi
,
C.
,
Chen
,
H.
,
Chen
,
W.
,
Zhang
,
S.
,
Chong
,
D.
, and
Yan
,
J.
,
2015
, “
1D Model to Predict Ejector Performance at Critical and Sub-Critical Operation in the Refrigeration System
,”
Energy Procedia
,
75
, pp.
1477
1483
.
46.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
,”
Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications
, Elsevier, Amsterdam, pp.
43
97
.
47.
Salavera
,
D.
,
Libotean
,
S.
,
Patil
,
K.
,
Esteve
,
X.
, and
Coronas
,
A.
,
2006
, “
Densities and Heat Capacities of the Ammonia + Water + NaOH and Ammonia + Water + KOH Solutions
,”
J. Chem. Eng. Data
,
51
(
3
), pp.
1020
1025
.
48.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behnia
,
M.
,
1998
, “
Modelling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
(
6
), pp.
395
406
.
49.
Dabwan
,
Y. N.
,
2013
, “
Development and Assessment of Solar-Assisted Gas Turbine Cogeneration Systems in Saudi Arabia—KFUPM eprints
.” https://eprints.kfupm.edu.sa/id/eprint/138965/. Accessed March 20, 2021.
50.
Al-Abbadi
,
N. M.
,
2005
, “
Wind Energy Resource Assessment for Five Locations in Saudi Arabia
,”
Renewable Energy
,
30
(
10
), pp.
1489
1499
.
51.
Maps and Graphs
.” https://rratlas.energy.gov.sa/RRMMDataPortal/en/MapTool. Accessed March 26, 2019.
52.
Libotean
,
S.
,
Salavera
,
D.
,
Valles
,
M.
,
Esteve
,
X.
, and
Coronas
,
A.
,
2007
, “
Vapor-Liquid Equilibrium of Ammonia + Lithium Nitrate + Water and Ammonia + Lithium Nitrate Solutions From (293.15 to 353.15) K
,”
J. Chem. Eng. Data
,
52
(
3
), pp.
1050
1055
.
53.
Libotean
,
S.
,
Martı
,
A.
,
Salavera
,
D.
,
Valles
,
M.
,
Esteve
,
X.
, and
Coronas
,
A.
,
2008
, “
Densities, Viscosities, and Heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate + Water Solutions Between (293.15 and 353.15) K
,”
J. Chem. Eng.
,
53
(
10
), pp.
2383
2388
.
54.
Cacciola
,
G.
,
Restuccia
,
G.
, and
Aristov
,
Y.
,
1995
, “
Vapor Pressure of (Potassium Hydroxide + Ammonia + Water) Solutions
,”
J. Chem. Eng. Data
,
40
(
1
), pp.
267
270
.
You do not currently have access to this content.