Abstract

Viscosified acids are desired in several oilfield applications such as in acid diversion and acid fracturing operations. The study aimed to delineate the rheological properties of a novel amine type surfactant and viscosified acid-surfactant solutions. The steady shear and dynamic rheological properties were evaluated by varying the surfactant, acid, and salt concentration. Such a study is required to gauge the suitability of the viscosifying agent in acid stimulation jobs. The surfactant solutions without acid showed shear-thinning behavior, whereas those with acid showed a Newtonian plateau over a wide shear rate range before undergoing shear thinning. This means that over a wide shear rate range, the acid-surfactant solutions become independent of applied shear. At low shear rates, the viscosity of the surfactant was higher compared with the surfactant-acid solution. However, at high shear rates, the viscosity of the surfactant was lower compared with the viscosity of the surfactant-acid solution. There was an optimal salt concentration that improved the viscosity and elasticity of the acid-surfactant solutions. Thus, the rheology of the surfactant solution can be improved by adding both acid and salt. The elastic properties of acid-surfactant solutions were also better compared with the elastic properties of pure surfactant. The addition of acid improved the elastic properties of the surfactant solutions. Constant viscosity over a range of shear rate is a suitable application for acid fracturing operations in which the acid leak-off will be minimal due to the high viscosity. Also, brines in most of the carbonate formation consist of high loading of calcium chloride which was found to have a positive effect on the viscosity. Increasing the calcium chloride leads to an increase in viscosity, and then subsequently decreases the viscosity. This shows that the acid and salt concentration plays a role in modifying the rheological properties of the surfactant solutions.

References

1.
Berret
,
J. F.
,
2006
, “Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions,”
Molecular Gels
,
R. G.
Weiss
and
P.
Terech
, eds.,
Springer
,
Dordrecht
, pp.
667
720
.
2.
Schramm
,
L. L.
,
Stasiuk
,
E. N.
, and
Marangoni
,
D. G.
,
2003
, “
Surfactants and Their Applications
,”
Annu. Rep. Prog. Chem.—Sect. C
,
99
, pp.
3
48
. 10.1039/B208499F
3.
Kamal
,
M. S.
,
Hussein
,
I. A.
, and
Sultan
,
A. S.
,
2017
, “
Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications
,”
Energy Fuels
,
31
(
8
), pp.
7701
7720
. 10.1021/acs.energyfuels.7b00353
4.
Rose
,
G. D.
, and
Foster
,
K. L.
,
1989
, “
Drag Reduction and Rheological Properties of Cationic Viscoelastic Surfactant Formulations
,”
J. Non-Newton. Fluid Mech.
,
31
(
1
), pp.
59
85
. 10.1016/0377-0257(89)80014-X
5.
Lu
,
Y.
,
Yang
,
F.
,
Ge
,
Z.
,
Wang
,
Q.
, and
Wang
,
S.
,
2017
, “
Influence of Viscoelastic Surfactant Fracturing Fluid on Permeability of Coal Seams
,”
Fuel
,
194
, pp.
1
6
. 10.1016/j.fuel.2016.12.078
6.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Mahmoud
,
M.
,
Shakil Hussain
,
S. M.
,
Abouelresh
,
M.
, and
Al-Harthi
,
M. A.
,
2019
, “
Organophilic Clay-Based Drilling Fluids for Mitigation of Unconventional Shale Reservoirs Instability and Formation Damage
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
093102
. 10.1115/1.4043248
7.
Yang
,
J.
,
Wang
,
X.
,
Yang
,
Y.
,
Peng
,
X.
, and
Zeng
,
F.
,
2019
, “
An Empirical Model to Estimate Sweep Efficiency of a Surfactant-Alternating-Gas Foam Process in Heterogeneous Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122902
. 10.1115/1.4043861
8.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2020
, “
A Similarity-Based Semi-Analytical Solution for Recovery Performance Assessment of Unconventional Oil and Gas Reservoirs With Interfacial-Tension-Dependent Capillary Pressure Effects
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042905
. 10.1115/1.4044942
9.
Meng
,
X.
, and
Yang
,
D. T.
,
2018
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
10.
Hassan
,
A. M.
, and
Al-Hashim
,
H. S.
,
2020
, “
Oil Recovery Mechanisms During Sequential Injection of Chelating Agent Solutions Into Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012903
. 10.1115/1.4044226
11.
Chen
,
Z.
, and
Yang
,
D.
,
2019
, “
Correlations of Equilibrium Interfacial Tension Based on Mutual Solubility/Density: Extension to n-Alkane-Water and n-Alkane-CO2 Binary/Ternary Systems and Comparisons With the Parachor Model
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122901
. 10.1115/1.4043824
12.
Rehage
,
H.
, and
Hoffmann
,
H.
,
1988
, “
Rheological Properties of Viscoelastic Surfactant Systems
,”
J. Phys. Chem.
,
92
(
16
), pp.
4712
4719
. 10.1021/j100327a031
13.
Wu
,
X.
,
Zhang
,
Y.
,
Sun
,
X.
,
Huang
,
Y.
,
Dai
,
C.
, and
Zhao
,
M.
,
2018
, “
A Novel CO2 and Pressure Responsive Viscoelastic Surfactant Fluid for Fracturing
,”
Fuel
,
229
, pp.
79
87
. 10.1016/j.fuel.2018.04.081
14.
Da
,
C.
,
Jian
,
G.
,
Alzobaidi
,
S.
,
Yang
,
J.
,
Biswal
,
S. L.
,
Hirasaki
,
G. J.
, and
Johnston
,
K. P.
,
2018
, “
Design of CO2-in-Water Foam Stabilized With Switchable Amine Surfactants at High Temperature in High-Salinity Brine and Effect of Oil
,”
Energy Fuels
,
32
(
12
), pp.
12259
12267
. 10.1021/acs.energyfuels.8b02959
15.
Granek
,
R.
, and
Cates
,
M. E.
,
1992
, “
Stress Relaxation in Living Polymers: Results From a Poisson Renewal Model
,”
J. Chem. Phys.
,
96
(
6
), pp.
4758
4767
. 10.1063/1.462787
16.
Cates
,
M. E.
, and
Candau
,
S. J.
,
1990
, “
Statics and Dynamics of Worm-Like Surfactant Micelles
,”
J. Phys. Condens. Matter.
,
2
(
33
), pp.
6869
6892
. 10.1088/0953-8984/2/33/001
17.
Chu
,
Z.
,
Feng
,
Y.
,
Su
,
X.
, and
Han
,
Y.
,
2010
, “
Wormlike Micelles and Solution Properties of a C22-Tailed Amidosulfobetaine Surfactant
,”
Langmuir
,
26
(
11
), pp.
7783
7791
. 10.1021/la904582w
18.
Molchanov
,
V. S.
,
Philippova
,
O. E.
,
Khokhlov
,
A. R.
,
Kovalev
,
Y. A.
, and
Kuklin
,
A. I.
,
2007
, “
Self-Assembled Networks Highly Responsive to Hydrocarbons
,”
Langmuir
,
23
(
1
), pp.
105
111
. 10.1021/la061612l
19.
Kumar
,
R.
,
Kalur
,
G. C.
,
Ziserman
,
L.
,
Danino
,
D.
, and
Raghavan
,
S. R.
,
2007
, “
Wormlike Micelles of a C22-Tailed Zwitterionic Betaine Surfactant: From Viscoelastic Solutions to Elastic Gels
,”
Langmuir
,
23
(
26
), pp.
12849
12856
. 10.1021/la7028559
20.
Chang
,
F.
,
Qu
,
Q.
, and
Miller
,
M.
,
2002
, “
Fluid System Having Controllable Reversible Viscosity
,”
US6399546B1
.
21.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Shehri
,
D.
, and
Murtaza
,
M.
,
2020
, “
An Environment Friendly Approach to Reduce the Breakdown Pressure of High Strength Unconventional Rocks by Cyclic Hydraulic Fracturing
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
043002
. 10.1115/1.4045317
22.
Crews
,
J. B.
,
2012
, “
Saponified Fatty Acids as Breakers for Viscoelastic Surfactant-Gelled Fluids
,”
US8633255B2
.
23.
Abad
,
C.
,
Lee
,
J. C.
,
Sullivan
,
P. F.
,
Nelson
,
E.
,
Chen
,
Y.
,
Baser
,
B.
, and
Lin
,
L.
,
2010
, “
Internal Breaker for Oilfield Treatments
,”
US20070032386A1
.
24.
Crowe
,
C. W.
,
Martin
,
R. C.
, and
Michaelis
,
A. M.
,
1981
, “
Evaluation of Acid-Gelling Agents for Use in Well Stimulation
,”
Soc. Pet. Eng. J.
,
21
(
04
), pp.
415
424
. 10.2118/9384-PA
25.
Mi
,
Q.
,
Li
,
C.
,
Yi
,
X.
, and
Zhou
,
J.
,
2017
, “
Novel Viscoelastic Surfactant-Based Self-Diverting Acid Systems for Carbonate Acidizing
,”
Chem. Technol. Fuels Oils
,
53
(
4
), pp.
520
528
. 10.1007/s10553-017-0831-5
26.
Bulgakova
,
G. T.
,
Kharisov
,
R. Y.
,
Pestrikov
,
A. V.
, and
Sharifullin
,
A. R.
,
2014
, “
Experimental Study of a Viscoelastic Surfactant-Based in Situ Self-Diverting Acid System: Results and Interpretation
,”
Energy Fuels
,
28
(
3
), pp.
1674
1685
. 10.1021/ef4019542
27.
Samuel
,
M.
,
Card
,
R. J.
,
Nelson
,
E. B.
,
Brown
,
J. E.
,
Vinod
,
P. S.
,
Temple
,
H. L.
,
Qu
,
Q.
, and
Fu
,
D. K.
,
1997
, “
Polymer-Free Fluid for Hydraulic Fracturing
,”
Proceeding-SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 5–8
,
SPE-38622-MS
,
Society of Petroleum Engineers
.
28.
Mahmoud
,
M.
,
Al-Duailej
,
Y.
,
Al-Khaldi
,
M.
,
Kwak
,
H.
,
Shebatalhamd
,
A.
, and
Al-Yami
,
I.
,
2016
, “
NMR as a Characterization Tool for Wormholes
,”
SPE Prod. Oper.
,
31
(
4
), pp.
362
373
. 10.2118/171699-pa
29.
Kefi
,
S.
,
Lee
,
J.
,
Pope
,
T. L.
,
Sullivan
,
P.
,
Nelson
,
E.
,
Hernandez
,
A. N.
,
Olsen
,
T.
,
Parlar
,
M.
,
Powers
,
B.
,
Roy
,
A.
,
Wilson
,
A.
, and
Twynam
,
A.
,
2004
, “
Expanding Applications for Viscoelastic Surfactants
,”
Oilf. Rev.
,
16
(
4
), pp.
10
23
.
30.
Wang
,
Y.
,
Zhang
,
Y.
,
Liu
,
X.
,
Wang
,
J.
,
Wei
,
L.
, and
Feng
,
Y.
,
2014
, “
Effect of a Hydrophilic Head Group on Krafft Temperature, Surface Activities and Rheological Behaviors of Erucyl Amidobetaines
,”
J. Surfactants Deterg.
,
17
(
2
), pp.
295
301
. 10.1007/s11743-013-1496-7
31.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
,”
SPE Canada Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Mar. 13–14
,
SPE-189829-MS
,
Society of Petroleum Engineers
.
32.
Raghavan
,
S. R.
, and
Douglas
,
J. F.
,
2012
, “
The Conundrum of Gel Formation by Molecular Nanofibers, Wormlike Micelles, and Filamentous Proteins: Gelation Without Cross-Links?
,”
Soft Matter
,
8
(
33
), pp.
8539
8546
. 10.1039/c2sm25107h
33.
Chu
,
Z.
, and
Feng
,
Y.
,
2010
, “
Amidosulfobetaine Surfactant Gels With Shear Banding Transitions
,”
Soft Matter
,
6
(
24
), pp.
6065
6067
. 10.1039/c0sm00874e
34.
Zhang
,
Y.
,
An
,
P.
, and
Liu
,
X.
,
2015
, “
A ‘Worm’-Containing Viscoelastic Fluid Based on Single Amine Oxide Surfactant With an Unsaturated C 22-Tail
,”
RSC Adv.
,
5
(
25
), pp.
19135
19144
. 10.1039/C4RA16772D
35.
Li
,
L.
,
Nasr-El-Din
,
H. A.
, and
Cawiezel
,
K. E.
,
2010
, “
Rheological Properties of a New Class of Viscoelastic Surfactant
,”
SPE Prod. Oper.
,
25
(
03
), pp.
355
366
. 10.2118/121716-pa
36.
Al-Hadithi
,
T. S. R.
,
Barnes
,
H. A.
, and
Walters
,
K.
,
1992
, “
The Relationship Between the Linear (Oscillatory) and Nonlinear (Steady-State) Flow Properties of a Series of Polymer and Colloidal Systems
,”
Colloid Polym. Sci.
,
270
(
1
), pp.
40
46
. 10.1007/BF00656927
37.
Gomaa
,
A. M.
,
Gupta
,
D. V. S.
, and
Carman
,
P.
,
2014
, “
Viscoelastic Behavior and Proppant Transport Properties of a New Associative Polymer-Based Fracturing Fluid
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 26–28
,
SPE-168113-MS
,
Society of Petroleum Engineers
, pp.
1
17
.
38.
Candau
,
S. J.
,
Khatory
,
A.
,
Lequeux
,
F.
, and
Kern
,
F.
,
1993
, “
Rheological Behaviour of Wormlike Micelles: Effect of Salt Content
,”
Le J. Phys. IV
,
3
(
C1
), pp.
C1-197
C1-209
. 10.1051/jp4:1993117
39.
Kwiatkowski
,
A. L.
,
Molchanov
,
V. S.
,
Orekhov
,
A. S.
,
Vasiliev
,
A. L.
, and
Philippova
,
O. E.
,
2016
, “
Impact of Salt Co-and Counterions on Rheological Properties and Structure of Wormlike Micellar Solutions
,”
J. Phys. Chem. B
,
120
(
49
), pp.
12547
12556
. 10.1021/acs.jpcb.6b09817
40.
Kabir-ud-Din
,
David
,
S. L.
, and
Kumar
,
S.
,
1997
, “
Viscosities of Sodium Dodecyl Sulfate Solutions in Aqueous Ammonium Salts
,”
J. Chem. Eng. Data
,
42
(
6
), pp.
1224
1226
. 10.1021/je970045o
41.
Dreiss
,
C. A.
,
2007
, “
Wormlike Micelles: Where Do We Stand? Recent Developments, Linear Rheology and Scattering Techniques
,”
Soft Matter
,
3
(
8
), pp.
956
970
. 10.1039/b705775j
You do not currently have access to this content.