Abstract

This paper aims at developing a novel mesoscale combustion-based thermoelectric power generator as an alternate to the electrochemical batteries. Most of the micro and mesoscale combustors investigated till date are based on external fuel and air supply systems, which may not be beneficial for a practical system. The proposed design is a standalone system which makes use of the heat conducted through the combustor walls, as an energy source to evaporate the liquid fuel stored in a surrounding tank and supply the vaporized fuel to the combustor. The high momentum fuel (vapor) jet is designed to entrain the ambient air in appropriate proportion so as to form a combustible mixture. The fuel/air mixture is fed to a mesoscale combustor and the flame is stabilized by facilitating hot gas recirculation regions. The hot combustion products then flow over a ceramic plate on the other side of which the hot side of a thermoelectric module (TEM) is attached, while ensuring a near uniform temperature, to generate electricity. The cold side of the TEM is maintained at relatively lower temperature and the heat is designed to be rejected using fins to the ambient. The prototype is designed to produce an electrical power output of 12 W with an overall efficiency of about 2.4% (heat load of 500 W) and endurance of 1.5 h in a single fuel refill. The paper presents detailed description of the constituent components and the CFD analysis which evaluates the performance of the system.

References

1.
Ju
,
Y.
,
Cadou
,
C.
, and
Maruta
,
K.
,
2015
,
Microscale Combustion and Power Generation
,
Momentum Press
,
New York
.
2.
Ju
,
Y.
, and
Maruta
,
K.
,
2011
, “
Microscale Combustion: Technology Development and Fundamental Research
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
669
715
. 10.1016/j.pecs.2011.03.001
3.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
I.
,
Ananthasuresh
,
G.
,
Ayaon
,
A.
,
Breuer
,
K.
,
Chen
,
K.
,
Ehrich
,
F. F.
,
Esteve
,
E.
,
Freshette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S. A.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Mur-Miranda
,
J. O.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y.
, and
Waitz
,
I. A.
,
1997
, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines—The MIT Microengine Project
,”
AIAA Fluid Dynamics Conference
,
Snowmass Village, CO
,
June 29–July 2
, pp.
1
12
.
4.
Fu
,
K.
,
Knobloch
,
A. J.
,
Martinez
,
F. C.
,
Walther
,
D. C.
,
Fernandez-Pello
,
C.
,
Miyaska
,
K.
, and
Maruta
,
K.
,
2001
, “
Design and Experimental Results of Small-Scale Rotary Engines
,”
ASME International Mechanical Engineering Congress and Exposition
,
New York, NY
,
Nov. 11–16
, pp.
1
7
.
5.
Dahm
,
W. J. A.
,
Ni
,
J.
,
Mijit
,
K.
,
Mayor
,
R.
,
Qiao
,
G.
,
Benjamin
,
A.
,
Gu
,
Y.
,
Lei
,
Y.
, and
Papke
,
M.
,
2002
, “
Micro Internal Combustion Swing Engine (MICSE) for Portable Power Generation Systems
,”
AIAA Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 14–17
, pp.
1
14
.
6.
Huth
,
J.
, and
Collins
,
J.
,
2007
, “
Diesel Fuel-to-Electric Energy Conversion Using Compact Portable, Stirling Engine-Based Systems
,”
JSME International Stirling Engine Conference
,
Tokyo, Japan
,
Sept. 23–26
, pp.
1
4
.
7.
Yadav
,
S.
,
Yamasani
,
P.
, and
Kumar
,
S.
,
2015
, “
Experimental Studies on a Micro Power Generator Using Thermo-Electric Modules Mounted on a Micro-Combustor
,”
Energy Convers. Manage.
,
99
(
15
), pp.
1
7
. 10.1016/j.enconman.2015.04.019
8.
Yang
,
W. M.
,
Chou
,
S. K.
,
Shu
,
C.
,
Xue
,
H.
,
Li
,
Z. W.
,
Li
,
D. T.
, and
Pan
,
J. F.
,
2003
, “
Microscale Combustion Research for Application to Micro Thermophotovoltaic Systems
,”
Energy Convers. Manage.
,
44
(
16
), pp.
2625
2634
. 10.1016/S0196-8904(03)00024-4
9.
Li
,
H.
,
Chen
,
Y.
,
Yan
,
Y.
,
Hu
,
C.
,
Fan
,
H.
, and
Feng
,
S.
,
2018
, “
Numerical Study on Heat Transfer Enhanced in a Microcombustor With Staggered Cylindrical Array for Micro-Thermophotovoltaic System
,”
ASME J. Energy Resour. Technol.
,
140
(11), p.
112204
. 10.1115/1.4040191
10.
Kyritsis
,
D. C.
,
Roychoudhury
,
S.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
, and
Gomez
,
A.
,
2004
, “
Mesoscale Combustion: A First Step Towards Liquid Fueled Batteries
,”
Exp. Therm. Fluid Sci.
,
28
(
7
), pp.
763
770
. 10.1016/j.expthermflusci.2003.12.014
11.
Li
,
Y.
,
Chao
,
Y.
,
Amade
,
N. S.
, and
Dunn-Rankin
,
D.
,
2008
, “
Progress in Miniature Liquid Film Combustors: Double Chamber and Central Porous Fuel Inlet Designs
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1118
1131
. 10.1016/j.expthermflusci.2008.01.005
12.
Dunn-Rankin
,
D.
,
Leal
,
E. M.
, and
Walther
,
D. C.
,
2005
, “
Personal Power Systems
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
422
465
. 10.1016/j.pecs.2005.04.001
13.
Walther
,
D. C.
, and
Ahn
,
J.
,
2011
, “
Advances and Challenges in the Development of Power-Generation Systems at Small Scales
,”
Prog. Energy Combust. Sci.
,
37
(
5
), pp.
583
610
. 10.1016/j.pecs.2010.12.002
14.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Kandil
,
H. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
A Stand-Alone Hybrid Photovoltaic, Fuel Cell, and Battery System: Case Studies in Jordan
,”
ASME J. Energy Resour. Technol.
,
141
(11), p.
111201
. 10.1115/1.4043656
15.
Sharma
,
P.
,
Jain
,
N.
, and
Arghode
,
V.
,
2019
, “
Investigation of A Low Emission Liquid Fueled Reverse-Cross-Flow Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(10), p.
102202
. 10.1115/1.4043437
16.
Cengel
,
Y. A.
,
2004
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
17.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
, 3rd ed.,
Tata McGraw-Hill
,
New Delhi
.
18.
Taler
,
D.
, and
Taler
,
J.
,
2017
, “
Simple Heat Transfer Correlations for Turbulent Tube Flow
,”
E3S Web of Conferences
,
Cracow, Poland
,
Oct. 12–14, 2016
, p.
4
.
19.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
Taylor and Francis
,
London
.
20.
Yaws
,
C. L.
, and
Yang
,
H.-C.
,
1989
, “
To Estimate Vapor Pressure Easily. Antoine Coefficients Relate Pressure to Temperature for Almost 700 Major Organic Compounds
,”
Hydrocarbon Process.
,
68
(
10
), pp.
65
68
.
21.
Fan
,
Y.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2009
, “
Experimental Study of Micro-Scale Premixed Flame in Quartz Channels
,”
Proc. Combust. Inst.
,
32
(2), pp.
3083
3090
. 10.1016/j.proci.2008.06.219
22.
Lokini
,
P.
,
Roshan
,
D.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(6), p.
062009
. 10.1115/1.4042410
23.
Wu
,
A.
,
Keum
,
S.
,
Greene
,
M.
,
Reuss
,
D.
, and
Sick
,
V.
,
2019
, “
Comparison of Near-Wall Flow and Heat Transfer of an Internal Combustion Engine Using Particle Image Velocimetry and Computational Fluid Dynamics
,”
ASME J. Energy Resour. Technol.
,
141
, p.
122202
. 10.1115/1.4044021
24.
Baranowski
,
L. L.
,
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2013
, “
Effective Thermal Conductivity in Thermoelectric Materials
,”
J. Appl. Phys.
,
113
(
20
), p.
204904
. 10.1063/1.4807314
25.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(3), pp.
279
300
. 10.1016/0017-9310(69)90011-8
26.
Naik
,
C.
,
Puduppakkam
,
K.
, and
Meeks
,
E.
,
2019
, “
A Comprehensive Kinetics Library for Simulating the Combustion of Automotive Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(9), p.
092201
. 10.1115/1.4043250
You do not currently have access to this content.