Abstract

This paper proposes a new type of Gas Turbine Cycle-supercritical CO2 Brayton/organic Rankine cycle (GT-SCO2/ORC) cogeneration system, in which the exhaust gas from gas-fired plants generates electricity through GT and then the remaining heat is absorbed by the supercritical CO2 (SCO2) Brayton cycle and ORC. CO2 contained in the exhaust gas is absorbed by monoethanolamine (MEA) and liquefied via liquified natural gas (LNG). Introducing thermodynamic efficiencies, thermoeconomic analysis to evaluate the system performance and total system cost is used as the evaluation parameter. The results show that the energy efficiency and exergy efficiency of the system are 56.47% and 45.46%, respectively, and the total cost of the product is 2798.38 $/h. Moreover, with the increase in air compressor (AC) or gas turbine isentropic efficiency, GT inlet temperature, and air preheater (AP) outlet temperature, the thermodynamic efficiencies have upward trends, which proves these four parameters optimize the thermodynamic performance. The total system cost can reach a minimum value with the increase in AC pressure ratio, GT isentropic efficiency, and AC isentropic efficiency, indicating that these three parameters can optimize the economic performance of the cycle. The hot water income increases significantly with the increase in the GT inlet temperature, but it is not cost-effective in terms of the total cost.

References

1.
Caglayan
,
H.
, and
Caliskan
,
H.
,
2019
, “
Thermodynamic Based Economic and Environmental Analyses of an Industrial Cogeneration System
,”
Appl. Therm. Eng.
,
158
, p.
113792
. 10.1016/j.applthermaleng.2019.113792
2.
Darabadi Zareh
,
A.
,
Khoshbakhti Saray
,
R.
,
Mirmasoumi
,
S.
, and
Bahlouli
,
K.
,
2018
, “
Extensive Thermodynamic and Economic Analysis of the Cogeneration of Heat and Power System Fueled by the Blend of Natural Gas and Biogas
,”
Energy Convers. Manage.
,
164
, pp.
329
343
. 10.1016/j.enconman.2018.03.003
3.
Nazari
,
N.
,
Heidarnejad
,
P.
, and
Porkhial
,
S.
,
2016
, “
Multi-objective Optimization of a Combined Steam-Organic Rankine Cycle Based on Exergy and Exergo-Economic Analysis for Waste Heat Recovery Application
,”
Energy Convers. Manage.
,
127
, pp.
366
379
. 10.1016/j.enconman.2016.09.022
4.
Varma
,
G. V. P.
, and
Srinivas
,
T.
,
2017
, “
Power Generation from Low Temperature Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
402
414
. 10.1016/j.rser.2016.11.005
5.
Mago
,
P. J.
,
Chamra
,
L. M.
,
Srinivasan
,
K.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Regenerative Organic Rankine Cycles Using Dry Fluids
,”
Appl. Therm. Eng.
,
28
(
8-9
), pp.
998
1007
. 10.1016/j.applthermaleng.2007.06.025
6.
Peng
,
L.
,
Zhonghe
,
H.
,
Zhongkai
,
M.
,
Xu
,
H.
, and
Zhi
,
W.
,
2018
, “
Screening and Parameter Optimization of Low Temperature and Superheated Organic Rankine Cycle
,”
J. Sol. Energy
,
39
(
09
), pp.
2393
2402
.
7.
Muto
,
Y.
,
Ishiyama
,
S.
,
Kato
,
Y.
, and
Aritomi
,
M.
,
2010
, “
Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant
,”
J. Energy Power Eng.
,
9
, pp.
7
15
.
8.
Wang
,
L.
,
Pan
,
L. M.
,
Wang
,
J.
,
Chen
,
D.
,
Huang
,
Y.
, and
Hu
,
L.
,
2019
, “
Investigation on the Temperature Sensitivity of the S-CO2 Brayton Cycle Efficiency
,”
Energy
,
178
, pp.
739
750
. 10.1016/j.energy.2019.04.100
9.
Abrosimov
,
K. A.
,
Baccioli
,
A.
, and
Bischi
,
A.
,
2019
, “
Techno-Economic Analysis of Combined Inverted Brayton—Organic Rankine Cycle for High-Temperature Waste Heat Recovery
,”
Energy Convers. Manage.: X
,
3
, p.
100014
. 10.1016/j.ecmx.2019.100014
10.
Yawen
,
Z.
,
Jinliang
,
X.
, and
Xufei
,
Y.
,
2018
, “
Thermodynamic Analysis of Supercritical CO_2 Splitting Cycle and Combined Cycle
,”
Chin. Soc. Electr. Eng.
,
38
(
03
), pp.
814
822
.
11.
Akbari
,
A. D.
, and
Mahmoudi
,
S. M. S.
,
2014
, “
Thermoeconomic Analysis & Optimization of the Combined Supercritical CO 2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle
,”
Energy
,
78
, pp.
501
512
. 10.1016/j.energy.2014.10.037
12.
Liu
,
Y.
,
Han
,
J.
, and
You
,
H.
,
2019
, “
Performance Analysis of a CCHP System Based on SOFC/GT/CO2 Cycle and ORC With LNG Cold Energy Utilization
,”
Int. J. Hydrogen Energy
,
44
(
56
), pp.
29700
29710
. 10.1016/j.ijhydene.2019.02.201
13.
Romero Gómez
,
M.
,
Romero Gómez
,
J.
,
López-González
,
L. M.
, and
López-Ochoa
,
L. M.
,
2016
, “
Thermodynamic Analysis of a Novel Power Plant With LNG (Liquefied Natural Gas) Cold Exergy Exploitation and CO2 Capture
,”
Energy
,
105
, pp.
32
44
. 10.1016/j.energy.2015.09.011
14.
Ferrara
,
G.
,
Lanzini
,
A.
,
Leone
,
P.
,
Ho
,
M. T.
, and
Wiley
,
D. E.
,
2017
, “
Exergetic and Exergoeconomic Analysis of Post-Combustion CO 2 Capture Using MEA-Solvent Chemical Absorption
,”
Energy
,
130
, pp.
113
128
. 10.1016/j.energy.2017.04.096
15.
Zhang
,
L.
,
Pan
,
Z.
,
Yu
,
J.
,
Zhang
,
N.
, and
Zhang
,
Z.
,
2019
, “
Multiobjective Optimization for Exergoeconomic Analysis of an Integrated Cogeneration System
,”
Int. J. Energy Res.
,
43
(
5
), pp.
1868
1881
. 10.1002/er.4429
16.
Bejan
,
A.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
17.
Khaljani
,
M.
,
Khoshbakhti Saray
,
R.
, and
Bahlouli
,
K.
,
2015
, “
Comprehensive Analysis of Energy, Exergy and Exergo-Economic of Cogeneration of Heat and Power in a Combined Gas Turbine and Organic Rankine Cycle
,”
Energy Convers. Manage.
,
97
, pp.
154
165
. 10.1016/j.enconman.2015.02.067
18.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Mohammadkhani
,
F.
,
2019
, “
Thermodynamic and Thermoeconomic Analysis of Basic and Modified Power Generation Systems Fueled by Biogas
,”
Energy Convers. Manage.
,
181
, pp.
463
475
. 10.1016/j.enconman.2018.12.011
19.
Aali
,
A.
,
Pourmahmoud
,
N.
, and
Zare
,
V.
,
2017
, “
Exergoeconomic Analysis and Multi-Objective Optimization of a Novel Combined Flash-Binary Cycle for Sabalan Geothermal Power Plant in Iran
,”
Energy Convers. Manage.
,
143
, pp.
377
390
. 10.1016/j.enconman.2017.04.025
20.
Zhang
,
N.
,
Pan
,
Z.
,
Zhang
,
L.
, and
Zhang
,
Z.
,
2019
, “
Decarburization Characteristics of Coalbed Methane by Membrane Separation Technology
,”
Fuel
,
242
, pp.
470
478
. 10.1016/j.fuel.2019.01.087
21.
Zhang
,
Z.
,
Yan
,
Y.
,
Zhang
,
L.
,
Chen
,
Y.
, and
Ju
,
S.
,
2014
, “
CFD Investigation of CO2 Capture by Methyldiethanolamine and 2-(1-Piperazinyl)-Ethylamine in Membranes: Part B. Effect of Membrane Properties
,”
J. Nat. Gas Sci. Eng.
,
19
, pp.
311
316
. 10.1016/j.jngse.2014.05.023
22.
Vasu
,
S.
,
Khadse
,
A.
,
Kapat
,
J.
,
Hossain
,
J.
,
Donazzolo
,
A.
, and
Blanchette
,
L.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
. 10.1115/1.4039446
23.
Zare
,
V.
,
2015
, “
A Comparative Exergoeconomic Analysis of Different ORC Configurations for Binary Geothermal Power Plants
,”
Energy Convers. Manage.
,
105
, pp.
127
138
. 10.1016/j.enconman.2015.07.073
24.
Mansouri
,
T.
,
Ahmadi
,
M.
,
Ganjeh Kaviri
,
P.
, and
Jaafar
,
A.
, and
M
,
M. N.
,
2012
, “
Exergetic and Economic Evaluation of the Effect of HRSG Configurations on the Performance of Combined Cycle Power Plants
,”
Energy Convers. Manage.
,
58
, pp.
47
58
. 10.1016/j.enconman.2011.12.020
25.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery from Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
. 10.1115/1.4041093
26.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8-9
), pp.
1257
1289
. 10.1016/j.energy.2005.03.011
27.
Toffolo
,
A.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2018
, “
Generation of Complex Energy Systems by Combination of Elementary Processes
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112205
. 10.1115/1.4040194
28.
Sadeghi
,
M.
,
Mehr
,
A. S.
,
Zar
,
M.
, and
Santarelli
,
M.
,
2018
, “
Multi-objective Optimization of a Novel Syngas Fed SOFC Power Plant Using a Downdraft Gasifier
,”
Energy
,
148
, pp.
16
31
. 10.1016/j.energy.2018.01.114
29.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
. 10.1115/1.4033625
30.
Momeni
,
H.
, and
Keshtkar
,
M. M.
,
2020
, “
Thermodynamic, Economic, and Environmental Comparison Between the Direct and Indirect CO2 Refrigeration Cycle with Conventional Indirect NH3 Cycle With Considering a Heat Recovery System in an Ice Rink: A Case Study
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012002
. 10.1115/1.4044270
31.
Yongqiang
,
X.
, and
Ben
,
H.
,
2010
, “
Integration of Power Systems Using CO2 Cold Energy to Capture CO2
,”
J. Chem. Ind. Eng.
,
61
(
12
), pp.
3142
3148
.
You do not currently have access to this content.