The oil production from any well passes through three stages. The first stage is the natural extraction of oil under the well pressure, the second stage starts when the well pressure decreases. This second stage includes flooding the well with water via pumping sea or brackish water to increase the well pressure and push the oil up enhancing the oil recovery. After the first and secondary stages of oil production from the well, 20–30% of the well reserve is extracted. The well is said to be depleted while more than 70% of the oil are left over. At this stage, the third stage starts and it is called the enhanced oil recovery (EOR) or tertiary recovery. Enhanced oil recovery is a technology deployed to recover most of our finite crude oil deposit. With constant increase in energy demands, EOR will go a long way in extracting crude oil reserve while achieving huge economic benefits. EOR involves thermal and/or nonthermal means of changing the properties of crude oil in reservoirs, such as density and viscosity that ensures improved oil displacement in the reservoir and consequently better recovery. Thermal EOR, which is the focus of this paper, is considered the dominant technique among all different methods of EOR. In this paper, we present a brief overview of EOR classification in terms of thermal and nonthermal methods. Furthermore, a comprehensive review of different thermal EOR methods is presented and discussed.

References

1.
Sarapardeh
,
A.
,
Kiasari
,
H. H.
,
Alizadeh
,
N.
,
Mighani
,
S.
, and
Kamari
,
A.
,
2013
, “
Application of Fast-SAGD in Naturally Fractured Heavy Oil Reservoirs: A Case Study
,”
SPE Middle East Oil and Gas Show and Conference
, Manama, Bahrain, Mar. 10–13,
SPE
Paper No. 164418.
2.
Hemmati-Sarapardeh
,
A.
,
Shokrollahi
,
A.
,
Tatar
,
A.
,
Gharagheizi
,
F.
,
Mohammadi
,
A. H.
, and
Naseri
,
A.
,
2014
, “
Reservoir Oil Viscosity Determination Using a Rigorous Approach
,”
Fuel
,
116
, pp.
39
48
.
3.
Hemmati-Sarapardeh
,
A.
,
Khishvand
,
M.
,
Naseri
,
A.
, and
Mohammadi
,
A. H.
,
2013
, “
Toward Reservoir Oil Viscosity Correlation
,”
Chem. Eng. Sci.
,
90
, pp.
53
68
.
4.
Sarapardeh
,
A.
,
Aminshahidy
,
B.
,
Pajouhandeh
,
A.
,
Yousefi
,
S.
, and
Kaldozakh
,
S.
,
2016
, “
A Soft Computing Approach for the Determination of Crude Oil Viscosity: Light and Intermediate Crude Oil Systems
,”
J. Taiwan Inst. Chem. Eng.
,
59
, pp.
1
10
.
5.
Store
,
M. R.
,
2015
, “
Global Enhanced Oil Recovery Market is Expected to Reach Around USD 225 Billion in 2020
,” Market Research Store, FL, epub, accessed Aug. 17, 2018, http://www.marketresearchstore.com/news/global-enhanced-oil-recovery-market-is-expected-to-96
6.
Wells, P. R., 2008, “
The Peak in World Oil Supply
,” accessed Aug. 17, 2018, http://www.fuelsandenergy.com/presentations/WellsPeakOil.pdf
7.
Naqvi
,
S.
,
2012
, “
Enhanced Oil Recovery of Heavy Oil by Using Thermal and Non-Thermal Methods
,” MS thesis, Dalhousie University, Halifax, NS, Canada.
8.
Bera
,
A.
, and
Babadagli
,
T.
,
2015
, “
Status of Electromagnetic Heating for Enhanced Heavy Oil/Bitumen Recovery and Future Prospects: A Review
,”
Appl. Energy
,
151
, pp.
206
226
.
9.
Alvarado
,
V.
, and
Manrique
,
E.
,
2010
, “
Enhanced Oil Recovery: An Update Review
,”
Energies
,
3
(
9
), pp.
1529
1575
.
10.
Santos
,
R.
,
Loh
,
W.
,
Bannwart
,
A.
, and
Trevisan
,
O.
,
2014
, “
An Overview of Heavy Oil Properties and Its Recovery and Transportation Methods
,”
Braz. J. Chem. Eng.
,
31
(
3
), pp.
571
590
.
11.
Prats
,
M.
, 1982,
Thermal Recovery
(SPE Monograph Series, Vol. 7), SPE of AIME, New York.
12.
Kokal, S., and Al-Kaabi, A., 2010, “
Enhanced Oil Recovery: Challenges & Opportunities
,” World Petroleum Council, EXPEC Advanced Research Centre, Saudi Aramco, accessed Aug. 24, 2018, https://www.world-petroleum.org/docs/docs/publications/2010yearbook/P64-69_Kokal-Al_Kaabi.pdf
13.
Yuan
,
J.-Y.
,
Isaacs
,
E. E.
,
Huang
,
H.
, and
Vandenhoff
,
D. G.
,
2003
, “
Wet Electric Heating Process
,” Patent No. 6631761.
14.
Harvey
,
A. H.
,
Arnold
,
M.
, and
El-Feky
,
S. A.
,
1979
, “
Selective Electric Reservoir Heating
,”
J. Can. Pet. Technol.
,
18
(
3
), pp. 47–57.
15.
Computer Modelling Group
,
2012
, “
Advanced Process and Thermal Reservoir Simulator
,” Computer Modelling Group Ltd., Calgary, AB, Canada.
16.
Faradonbeh
,
M. R.
,
Hassanzadeh
,
H.
, and
Harding
,
T.
,
2016
, “
Numerical Simulations of Bitumen Recovery Using Solvent and Water Assisted Electrical Heating
,”
Fuel
,
186
, pp.
68
81
.
17.
Amba
,
S.
,
Chilingar
,
G.
, and
Beeson
,
C.
,
1964
, “
Use of Direct Electrical Current for Increasing the Flow Rate of Reservoir Fluids During Petroleum Recovery
,”
J. Can. Pet. Technol.
,
3
(
1
), pp.
8
14
.
18.
Chilingar
,
G. V.
,
Chang
,
K. S.
,
Davis
,
J. E.
,
Farhangi
,
H.
,
Adamson
,
L.
, and
Sawabini
,
S.
,
1968
, “
Possible Use of Direct Electrical Current for Augmenting Reservoir Energy During Petroleum Production
,”
Compass
,
45
(4).
19.
Chilingar
,
G. V.
,
Loo
,
W. W.
,
Khilyuk
,
L. F.
, and
Katz
,
S. A.
,
1997
, “
Electrobioremediation of Soils Contaminated With Hydrocarbons and Metals: Progress Report
,”
Energy Sources
,
19
(
2
), pp.
129
146
.
20.
Sahni
,
A.
,
Kumar
,
M.
, and
Knapp
,
R. B.
,
2000
, “
Electromagnetic Heating Methods for Heavy Oil Reservoirs
,”
SPE/AAPG Western Regional Meeting
, Long Beach, CA, June 19–22,
SPE
Paper No. 62550.
21.
Hascakir
,
B.
,
Acar
,
C.
, and
Akin
,
S.
,
2009
, “
Microwave-Assisted Heavy Oil Production: An Experimental Approach
,”
Energy Fuels
,
23
(
12
), pp.
6033
6039
.
22.
Kovaleva
,
L.
,
Davletbaev
,
A.
,
Babadagli
,
T.
, and
Stepanova
,
Z.
,
2010
, “
Effects of Electrical and Radio-Frequency Electromagnetic Heating on the Mass-Transfer Process During Miscible Injection for Heavy-Oil Recovery
,”
Energy Fuels
,
25
(
2
), pp.
482
486
.
23.
Alomair
,
O. A.
,
Alarouj
,
M. A.
,
Althenayyan
,
A. A.
,
Al Saleh
,
A. H.
,
Almohammad
,
H.
,
Altahoo
,
Y.
,
Alhaidar
,
Y.
,
Al Ansari
,
S. E.
, and
Alshammari
,
Y.
,
2012
, “
Improving Heavy Oil Recovery by Unconventional Thermal Methods
,”
SPE Kuwait International Petroleum Conference and Exhibition
, Kuwait City, Kuwait, Dec. 10–12,
SPE
Paper No. 163311.
24.
Greff
,
J.
, and
Babadagli
,
T.
,
2013
, “
Use of Nano-Metal Particles as Catalyst Under Electromagnetic Heating for In-Situ Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
112
, pp.
258
265
.
25.
Kovaleva
,
L.
,
Davletbaev
,
A.
, and
Minnigalimov
,
R.
,
2010
, “
Recoveries of Heavy Oil and Bitumen Techniques With the Radio Frequency Electromagnetic Irradiation (Russian)
,”
SPE Russian Oil and Gas Conference and Exhibition
, Moscow, Russia, Oct. 26–28,
SPE
Paper No. 138086.
26.
Davletbaev
,
A. Y.
,
Kovaleva
,
L.
, and
Nasyrov
,
N.
,
2008
, “
Numerical Simulation of Injection of a Solvent Into a Production Well Under Electromagnetic Action
,”
Fluid Dyn.
,
43
(
4
), pp.
583
589
.
27.
Hu
,
L.
,
Li
,
H. A.
,
Babadagli
,
T.
, and
Ahmadloo
,
M.
,
2017
, “
Experimental Investigation of Combined Electromagnetic Heating and Solvent-Assisted Gravity Drainage for Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
154
, pp. 589–601.
28.
Chhetri
,
A.
, and
Islam
,
M.
,
2008
, “
A Critical Review of Electromagnetic Heating for Enhanced Oil Recovery
,”
Pet. Sci. Technol.
,
26
(
14
), pp.
1619
1631
.
29.
Mutyala
,
S.
,
Fairbridge
,
C.
,
Paré
,
J. J.
,
Bélanger
,
J. M.
,
Ng
,
S.
, and
Hawkins
,
R.
,
2010
, “
Microwave Applications to Oil Sands and Petroleum: A Review
,”
Fuel Process. Technol.
,
91
(
2
), pp.
127
135
.
30.
Rehman
,
M. M.
, and
Meribout
,
M.
,
2012
, “
Conventional Versus Electrical Enhanced Oil Recovery: A Review
,”
J. Pet. Explor. Prod. Technol.
,
2
(
4
), pp.
169
179
.
31.
Mukhametshina
,
A.
, and
Martynova
,
E.
,
2013
, “
Electromagnetic Heating of Heavy Oil and Bitumen: A Review of Experimental Studies and Field Applications
,”
J. Pet. Eng.
,
2013
, p. 476519.
32.
Hasanvand
,
M.
, and
Golparvar
,
A.
,
2014
, “
A Critical Review of Improved Oil Recovery by Electromagnetic Heating
,”
Pet. Sci. Technol.
,
32
(
6
), pp.
631
637
.
33.
Sadeghi
,
A.
,
Hassanzadeh
,
H.
, and
Harding
,
T. G.
,
2017
, “
A Comparative Study of Oil Sands Preheating Using Electromagnetic Waves, Electrical Heaters and Steam Circulation
,”
Int. J. Heat Mass Transfer
,
111
, pp.
908
916
.
34.
Yang
,
C.-Z.
, and
Han
,
D.-K.
,
1991
, “
Present Status of EOR in the Chinese Petroleum Industry and Its Future
,”
J. Pet. Sci. Eng.
,
6
(
2
), pp.
175
189
.
35.
Friedmann
,
F.
,
Smith
,
M.
, and
Guice
,
W.
,
1994
, “
Steam-Foam Mechanistic Field Trial in the Midway-Sunset Field
,”
SPE Res. Eng.
,
9
(
4
), pp.
297
304
.
36.
Jabbour
,
C.
,
Quintard
,
M.
,
Bertin
,
H.
, and
Robin
,
M.
,
1996
, “
Oil Recovery by Steam Injection: Three-Phase Flow Effects
,”
J. Pet. Sci. Eng.
,
16
(
1–3
), pp.
109
130
.
37.
Patzek
,
T. W.
,
1996
, “
Field Applications of Steam Foam for Mobility Improvement and Profile Control
,”
SPE Reservoir Eng.
,
11
(
2
), pp.
79
86
.
38.
Fatemi
,
S. M.
, and
Jamaloei
,
B. Y.
,
2011
, “
Preliminary Considerations on the Application of Toe-to-Heel Steam Flooding (THSF): Injection Well–Producer Well Configurations
,”
Chem. Eng. Res. Des.
,
89
(
11
), pp.
2365
2379
.
39.
Li
,
S.
,
Li
,
B.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Yang
,
D.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
.
40.
Alikhlalov
,
K.
, and
Dindoruk
,
B.
,
2011
, “
Conversion of Cyclic Steam Injection to Continuous Steam Injection
,”
SPE Annual Technical Conference and Exhibition
, SPE Paper No. 146612.
41.
Alvarez
,
J.
, and
Han
,
S.
,
2013
, “
Current Overview of Cyclic Steam Injection Process
,”
J. Pet. Sci. Res.
,
2
(3), pp. 116–127.
42.
Jalilian
,
M.
,
Pourafshary
,
P.
,
Sola
,
B. S.
, and
Kamari
,
M.
,
2017
, “
Optimization of Smart Water Chemical Composition for Carbonate Rocks Through Comparison of Active Cations Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062904
.
43.
Banerjee
,
D. K.
,
2012
,
Oil Sands, Heavy Oil, & Bitumen
,
PennWell Corp
, Tulsa, OK.
44.
Ghoodjani
,
E.
,
Kharrat
,
R.
,
Vossoughi
,
M.
, and
Bolouri
,
S. H.
,
2012
, “
A Review on Thermal Enhanced Heavy Oil Recovery From Fractured Carbonate Reservoirs
,” SPE Heavy Oil Conference Canada, Calgary, AB, Canada, June 12–14,
SPE
Paper No. SPE-150147-MS.
45.
Batycky
,
J.
,
Leaute
,
R.
, and
Dawe
,
B.
,
1997
, “
A Mechanistic Model of Cyclic Steam Stimulation
,”
International Thermal Operations and Heavy Oil Symposium
, Bakersfield, CA, Feb. 10–12,
SPE
Paper No. 37550.
46.
Léauté
,
R. P.
,
Corry
,
K. E.
, and
Pustanyk
,
B. K.
,
2004
, “
Liquid Addition to Steam for Enhancing Recovery of Cyclic Steam Stimulation or LASER-CSS
,” Patent No. 6708759.
47.
Babadagli
,
T.
,
Er
,
V.
,
Naderi
,
K.
,
Burkus
,
Z.
, and
Ozum
,
B.
,
2010
, “
Use of Biodiesel as an Additive in Thermal Recovery of Heavy Oil and Bitumen
,”
J. Can. Pet. Technol.
,
49
(
11
), pp.
43
48
.
48.
Wu
,
H.
,
Du
,
Q.
,
Hou
,
J.
,
Li
,
J.
,
Gong
,
R.
,
Liu
,
Y.
, and
Li
,
Z.
,
2017
, “
Characterization and Prediction of Gas Breakthrough With Cyclic Steam and Gas Stimulation Technique in an Offshore Heavy Oil Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032801
.
49.
Kovscek
,
A.
,
2012
, “
Emerging Challenges and Potential Futures for Thermally Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
130
143
.
50.
Bierman
,
B.
,
Treynor
,
C.
,
O'donnell
,
J.
,
Lawrence
,
M.
,
Chandra
,
M.
,
Farver
,
A.
,
von Behrens
,
P.
, and
Lindsay
,
W.
,
2014
, “
Performance of an Enclosed Trough EOR System in South Oman
,”
Energy Procedia
,
49
, pp.
1269
1278
.
51.
Bierman
,
B.
,
O'donnell
,
J.
,
Burke
,
R.
,
McCormick
,
M.
, and
Lindsay
,
W.
,
2014
, “
Construction of an Enclosed Trough EOR System in South Oman
,”
Energy Procedia
,
49
, pp.
1756
1765
.
52.
Wang
,
Y.
,
Zhang
,
L.
,
Deng
,
J.
,
Wang
,
Y.
,
Ren
,
S.
, and
Hu
,
C.
,
2017
, “
An Innovative Air Assisted Cyclic Steam Stimulation Technique for Enhanced Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
151
, pp.
254
263
.
53.
Wang
,
Y.
,
Ren
,
S.
,
Zhang
,
L.
,
Peng
,
X.
,
Pei
,
S.
,
Cui
,
G.
, and
Liu
,
Y.
,
2018
, “
Numerical Study of Air Assisted Cyclic Steam Stimulation Process for Heavy Oil Reservoirs: Recovery Performance and Energy Efficiency Analysis
,”
Fuel
,
211
, pp.
471
483
.
54.
Lu
,
C.
,
Zhao
,
W.
,
Liu
,
Y.
, and
Dong
,
X.
, 2018, “
Pore-Scale Transport Mechanisms and Macroscopic Displacement Effects of In-Situ Oil-in-Water Emulsions in Porous Media
,”
ASME J. Energy Resour. Technol.
,
140
(10), p. 102904.
55.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
.
56.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
57.
Ali
,
S.
, and
Meldau
,
R.
,
1979
, “
Current Steamflood Technology
,”
J. Pet. Technol.
,
31
(
10
), pp.
1332
1342
.
58.
Ali
,
S.
,
1982
, “
Steam Injection Theories—A Unified Approach
,”
SPE California Regional Meeting
, San Francisco, CA, Mar. 24–26,
SPE
Paper No. 10746.
59.
Liu
,
P.
,
Zheng
,
H.
, and
Wu
,
G.
,
2017
, “
Experimental Study and Application of Steam Flooding for Horizontal Well in Ultraheavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012908
.
60.
Mozaffari
,
S.
,
Nikookar
,
M.
,
Ehsani
,
M. R.
,
Sahranavard
,
L.
,
Roayaie
,
E.
, and
Mohammadi
,
A. H.
,
2013
, “
Numerical Modeling of Steam Injection in Heavy Oil Reservoirs
,”
Fuel
,
112
, pp.
185
192
.
61.
Hossain
,
M. E.
,
2018
, “
Dimensionless Scaling Parameters During Thermal Flooding Process in Porous Media
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072004
.
62.
Al Hadabi
,
I.
,
Sasaki
,
K.
,
Sugai
,
Y.
, and
Yousefi-Sahzabi
,
A.
,
2016
, “
Steam Trap Control Valve for Enhancing Steam Flood Performance in an Omani Heterogeneous Heavy Oil Field
,”
J. Unconv. Oil Gas Resour.
,
16
, pp.
113
121
.
63.
Pang
,
Z.
,
Liu
,
H.
, and
Zhu
,
L.
,
2015
, “
A Laboratory Study of Enhancing Heavy Oil Recovery With Steam Flooding by Adding Nitrogen Foams
,”
J. Pet. Sci. Eng.
,
128
, pp.
184
193
.
64.
Hosseini
,
S. M. T.
,
Esfahani
,
S.
,
Doulatabadi
,
M. H.
,
Sarapardeh
,
A. H.
, and
Mohammadi
,
A. H.
,
2017
, “
On the Evaluation of Steam Assisted Gravity Drainage in Naturally Fractured Oil Reservoirs
,”
Petroleum
,
3
(
2
), pp.
273
279
.
65.
LIANG
,
G.
,
Shangqi
,
L.
,
Pingping
,
S.
,
Yang
,
L.
, and
Yanyan
,
L.
,
2016
, “
A New Optimization Method for Steam-Liquid Level Intelligent Control Model in Oil Sands Steam-Assisted Gravity Drainage (SAGD) Process
,”
Pet. Explor. Develop.
,
43
(
2
), pp.
301
307
.
66.
Forshomi
,
Z. D.
,
Alva-Argaez
,
A.
, and
Bergerson
,
J. A.
,
2017
, “
Optimal Design of Distributed Effluent Treatment Systems in Steam Assisted Gravity Drainage Oil Sands Operations
,”
J. Clean. Prod.
,
149
, pp.
1233
1248
.
67.
Ma
,
Z.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2017
, “
Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032909
.
68.
Koottungal
,
L.
,
2014
, “
2014 Worldwide EOR Survey
,”
Oil Gas J.
,
112
, pp. 79–91http://www.ogj.com/articles/print/volume-112/issue-4/special-report-eor-heavy-oil-survey/2014-worldwide-eor-survey.html.
69.
Suranto
,
A.
, and
Heru
,
P. S.
,
2017
, “
Investigation of Multilevel Injector for Ramp-Up Process in Vertical Well Using Steam Assisted Gravity Drainage Method
,”
Energy Procedia
,
105
, pp.
4513
4518
.
70.
Yuan
,
Z.
,
Liu
,
P.
,
Zhang
,
S.
,
Jiao
,
Y.
, and
Li
,
X.
,
2017
, “
Experimental Study and Numerical Simulation of a Solvent-Assisted Start-Up for SAGD Wells in Heavy Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
154
, pp. 521–527.
71.
Faradonbeh
,
M. R.
,
Harding
,
T.
,
Abedi
,
J.
, and
Hassanzadeh
,
H.
,
2015
, “
Stability Analysis of Coupled Heat and Mass Transfer Boundary Layers During Steam–Solvent Oil Recovery Process
,”
Transp. Porous Media
,
108
(
3
), pp.
595
615
.
72.
Nenniger
,
J.
, and
Nenniger
,
E.
,
2005
, “
Method and Apparatus for Stimulating Heavy Oil Production
,” Patent No. 6883607.
73.
Leaute
,
R. P.
,
2002
, “
Liquid Addition to Steam for Enhancing Recovery (LASER) of Bitumen With CSS: Evolution of Technology From Research Concept to a Field Pilot at Cold Lake
,”
SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference
, Calgary, AB, Canada, Nov. 4–7,
SPE
Paper No. 79011.
74.
Nasr
,
T.
,
Beaulieu
,
G.
,
Golbeck
,
H.
, and
Heck
,
G.
,
2003
, “
Novel Expanding Solvent-SAGD Process" ‘ES-SAGD’
,”
J. Can. Pet. Technol.
,
42
(
1
), pp. 13–16.
75.
Gupta
,
S.
,
Gittins
,
S.
, and
Picherack
,
P.
,
2005
, “
Field Implementation of Solvent Aided Process
,”
J. Can. Pet. Technol.
,
44
(
11
), pp. 8–13.
76.
Al-Murayri
,
M. T.
,
Maini
,
B. B.
,
Harding
,
T. G.
, and
Oskouei
,
J.
,
2016
, “
Multicomponent Solvent Co-Injection With Steam in Heavy and Extra-Heavy Oil Reservoirs
,”
Energy Fuels
,
30
(
4
), pp.
2604
2616
.
77.
Li
,
S.
,
Li
,
Z.
, and
Sun
,
X.
,
2017
, “
Effect of Flue Gas and n-Hexane on Heavy Oil Properties in Steam Flooding Process
,”
Fuel
,
187
, pp.
84
93
.
78.
Mohsenzadeh
,
A.
,
Escrochi
,
M.
,
Afraz
,
M.
,
Karimi
,
G.
,
Al-Wahaibi
,
Y.
, and
Ayatollahi
,
S.
,
2016
, “
Non-Hydrocarbon Gas Injection Followed by Steam–Gas Co-Injection for Heavy Oil Recovery Enhancement From Fractured Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
144
, pp.
121
130
.
79.
Zhengbin
,
W.
,
Huiqing
,
L.
, and
Xue
,
W.
,
2018
, “
Adaptability Research of Thermal–Chemical Assisted Steam Injection in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052901
.
80.
Cole
,
J. T.
, and
Pnevmaticos
,
S. M.
,
1983
, “
Canada's Solar Demonstration Programs: Results and Implications for the Future
,”
J. Can. Pet. Technol.
,
22
(
6
).
81.
Yegane
,
M. M.
,
Bashtani
,
F.
,
Tahmasebi
,
A.
,
Ayatollahi
,
S.
, and
Al-wahaibi
,
Y. M.
,
2016
, “
Comparing Different Scenarios for Thermal Enhanced Oil Recovery in Fractured Reservoirs Using Hybrid (Solar-Gas) Steam Generators, a Simulation Study
,”
78th EAGE
Conference and Exhibition, Vienna, Austria, May 30–June 2, SPE Paper No. 180101.
82.
Yegane
,
M. M.
,
Ayatollahi
,
S.
,
Bashtani
,
F.
, and
Romero
,
C.
,
2015
, “
Solar Generated Steam Injection in Hamca, Venezuelan Extra Heavy Oil Reservoir; Simulation Study for Oil Recovery Performance, Economical and Environmental Feasibilities
,”
EUROPEC 2015
, Madrid, Spain, June 1–4,
SPE
Paper No. 174305.
83.
Mokheimer
,
E. M. A.
, and
Habib
,
M. A.
,
2017
, “
Hybrid Solar Thermal Enhanced Oil Recovery System With Oxy-Fuel Combustor
,” U.S. Patent No. 9,845,667B2.
84.
Sandler
,
J.
,
Fowler
,
G.
,
Cheng
,
K.
, and
Kovscek
,
A. R.
,
2014
, “
Solar-Generated Steam for Oil Recovery: Reservoir Simulation, Economic Analysis, and Life Cycle Assessment
,”
Energy Convers. Manage.
,
77
, pp.
721
732
.
85.
van Heel
,
A. P.
,
Van Wunnik
,
J. N.
,
Bentouati
,
S.
, and
Terres
,
R.
,
2010
, “
The Impact of Daily and Seasonal Cycles in Solar-Generated Steam on Oil Recovery
,”
SPE EOR Conference at Oil and Gas West Asia
, Paper No. 129225.
86.
Afsar
,
C.
, and
Akin
,
S.
,
2016
, “
Solar Generated Steam Injection in Heavy Oil Reservoirs: A Case Study
,”
Renewable Energy
,
91
, pp.
83
89
.
87.
Glatz
,
G.
,
Hascakir
,
B.
,
Castanier
,
L.
,
Clemens
,
T.
, and
Kovscek
,
A.
,
2011
, “
Kinetic Cell and Combustion Tube Results for a Central European Crude Oil
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Oct. 30–Nov. 2,
SPE
Paper No. SPE-146089-MS.
88.
Ursenbach
,
M.
,
Moore
,
R.
, and
Mehta
,
S.
,
2010
, “
Air Injection in Heavy Oil Reservoirs-a Process Whose Time Has Come (Again)
,”
J. Can. Pet. Technol.
,
49
(
1
), pp.
48
54
.
89.
Koottungal
,
L.
,
2008
, “
2008 Worldwide EOR Survey
,”
Oil Gas J.
,
106
(
15
), p.
47
.
90.
Hansel
,
J. G.
,
Benning
,
M. A.
, and
Fernbacher
,
J. M.
,
1984
, “
Oxygen in-Situ Combustion for Oil Recovery: Combustion Tube Tests
,”
J. Pet. Technol.
,
36
(
7
), pp.
1139
1144
.
91.
Adewusi
,
V. A.
, and
Greaves
,
M.
,
1991
, “
Forward In Situ Combustion: Oil Recovery and Properties
,”
Fuel
,
70
(
4
), pp.
503
508
.
92.
Onyekonwu
,
M.
, and
Falade
,
G.
,
1989
, “
Recovery of Light Oil Using in Situ Combustion Thermal Recovery Methods
,”
Energy
,
14
(
3
), pp.
153
159
.
93.
Zhang
,
X.
,
Liu
,
Q.
, and
Che
,
H.
,
2013
, “
Parameters Determination During in Situ Combustion of Liaohe Heavy Oil
,”
Energy Fuels
,
27
(
6
), pp.
3416
3426
.
94.
Mahinpey
,
N.
,
Ambalae
,
A.
, and
Asghari
,
K.
,
2007
, “
In Situ Combustion in Enhanced Oil Recovery (EOR): A Review
,”
Chem. Eng. Commun.
,
194
(
8
), pp.
995
1021
.
95.
Cheih
,
C.
,
1982
, “
State-of-the-Art Review of Fireflood Field Projects (Includes Associated Papers 10901 and 10918)
,”
J. Pet. Technol.
,
34
(
1
), pp.
19
36
.
96.
Sarathi
,
P.
,
1999
, “
In-Situ Combustion Handbook Principles and Practices
,” National Petroleum Technology Office, Tulsa, OK, Report No. DOE/PC/91008-0374.
97.
Akkutlu
,
I. Y.
, and
Yortsos
,
Y. C.
,
2005
, “
The Effect of Heterogeneity on in-Situ Combustion: Propagation of Combustion Fronts in Layered Porous Media
,”
SPE J.
,
10
(
4
), pp.
394
404
.
98.
Fatemi
,
S.
,
Kharrat
,
R.
, and
Vossoughi
,
S.
,
2008
, “
Feasibility Study of in-Situ Combustion (ISC) in a 2-D Laboratory-Scale Fractured System Using a Thermal Reservoir Simulator
,” Second World Heavy Oil Congress (WHOC), Edmonton, AB, Canada, Paper No. No. 2008-449.
99.
Tabasinejad
,
F.
,
Kharrat
,
R.
, and
Vossoughi
,
S.
,
2006
, “
Feasibility Study of in-Situ Combustion in Naturally Fractured Heavy Oil Reservoirs
,”
International Oil Conference and Exhibition in Mexico
, Cancun, Mexico, Aug. 31–Sept. 2,
SPE
Paper No. 103969.
100.
Hart
,
P. R.
,
2017
, “
Hydrocarbon Mobility and Recovery Through in-Situ Combustion With the Addition of Ammonia
,” Patent No. 9574429.
101.
Paurola
,
P.
,
Vindspoll
,
H.
,
Grande
,
K. V.
, and
Hofstad
,
K. H.
,
2016
, “
In Situ Combustion Process With Reduced CO2 Emissions
,” Patent No. 9470077.
102.
Canas
,
C.
,
Gittins
,
S.
,
Gupta
,
S.
,
Sood
,
A.
, and
Wu
,
X.
,
2016
, “
Hydrocarbon Recovery Facilitated by In Situ Combustion
,” Patent No. 9284827.
103.
Das
,
S.
,
2014
, “
Method for the Elimination of the Atmospheric Release of Carbon Dioxide and Capture of Nitrogen From the Production of Electricity by In Situ Combustion of Fossil Fuels
,” Patent Application No. 14/150359.
104.
Warren
,
L. A.
,
Wickramathilaka
,
S. L.
,
Brown
,
D. A.
, and
Wheeler
,
T. J.
,
2014
, “
Use of Foam With In Situ Combustion Process
,” Patent No.
8776518
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014110157
105.
Caruthers
,
R. M.
,
1970
, “
High Temperature Oxidation of Crude Oil in Porous Media
,” Society of Petroleum Engineers, Richardson, TX.
106.
Rezaei
,
M.
,
Schaffie
,
M.
, and
Ranjbar
,
M.
,
2014
, “
Kinetic Study of Catalytic in-Situ Combustion Processes in the Presence of Nanoparticles
,”
Energy Sources, Part A
,
36
(
6
), pp.
605
612
.
107.
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2017
, “
Solar Power and Ion Transport-Based Enhanced Oil Recovery System and Method
,” U.S. Patent No.
9540918
https://patents.google.com/patent/US9540918.
108.
Gonçalves
,
L. I. B.
, and
Trevisan
,
O. V.
,
2009
, “
Numerical Simulation of Combustion Lab Experiments on Wet Forward Combustion
,” 20th International Congress of Mechanical Engineering, Gramado, Brazil, Nov. 15–20.
109.
Bottia-Ramirez
,
H.
,
Aguillon-Macea
,
M.
,
Lizcano-Rubio
,
H.
,
Delgadillo-Aya
,
C. L.
, and
Gadelle
,
C.
,
2017
, “
Numerical Modeling on In-Situ Combustion Process in the Chichimene Field: Ignition Stage
,”
J. Pet. Sci. Eng.
,
154
, pp. 462–468.
110.
Rahnema
,
H.
,
Barrufet
,
M.
, and
Mamora
,
D. D.
,
2017
, “
Combustion Assisted Gravity Drainage–Experimental and Simulation Results of a Promising In-Situ Combustion Technology to Recover Extra-Heavy Oil
,”
J. Pet. Sci. Eng.
,
154
, pp. 513–520.
111.
Rezaei
,
M.
,
Schaffie
,
M.
, and
Ranjbar
,
M.
,
2013
, “
Thermocatalytic In Situ Combustion: Influence of Nanoparticles on Crude Oil Pyrolysis and Oxidation
,”
Fuel
,
113
, pp.
516
521
.
112.
Amanam
,
U. U.
, and
Kovscek
,
A. R.
,
2017
, “
Analysis of the Effects of Copper Nanoparticles on in-Situ Combustion of Extra Heavy-Crude Oil
,”
J. Pet. Sci. Eng.
,
152
, pp.
406
415
.
113.
Avwaghwaruvwe
,
E.
,
2010
, “
Numerical Simulation of Chemical Reaction of In-Situ Combustion Using SARA Fraction
,” Master thesis, Delft University of Technology, Delft, The Netherlands.
114.
Burger
,
J. G.
,
1972
, “
Chemical Aspects of In-Situ Combustion-Heat of Combustion and Kinetics
,”
Soc. Pet. Eng. J.
,
12
(
5
), pp.
410
422
.
115.
Moschopedis
,
S. E.
, and
Speight
,
J. G.
,
1975
, “
Oxidation of a Bitumen
,”
Fuel
,
54
(
3
), pp.
210
212
.
116.
Babu
,
D. R.
, and
Cormack
,
D. E.
,
1984
, “
Effect of Low-Temperature Oxidation on the Composition of Athabasca Bitumen
,”
Fuel
,
63
(
6
), pp.
858
861
.
117.
Adegbesan
,
K.
,
Donnelly
,
J.
,
Moore
,
R.
, and
Bennion
,
D.
,
1987
, “
Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation
,”
SPE Reservoir Eng.
,
2
(
4
), pp.
573
582
.
118.
Alexander
,
J. D.
,
Martin
,
W. L.
, and
Dew
,
J. N.
,
1962
, “
Factors Affecting Fuel Availability and Composition During In Situ Combustion
,”
J. Pet. Technol.
,
14
(
10
), pp.
1154
1164
.
119.
Al-Saadoon
,
F. T.
,
1970
, “
Experimental and Statistical Study of Residual Oil Saturation After Gas, Water, and Steam Drive, and Fuel Availability for the In-Situ Combustion Process
,”
Ph.D. thesis
https://www.osti.gov/biblio/5964660.
120.
Dechaux, J., 1973, “
The Negative Temperature Coefficient in the Oxidation of Hydrocarbons
,” Oxid. Combust. Rev., 6, p. 75.
121.
Moore
,
R.
,
Laureshen
,
C.
,
Ursenbach
,
M.
,
Mehta
,
S.
, and
Belgrave
,
J.
,
1999
, “
Combustion/Oxidation Behavior of Athabasca Oil Sands Bitumen
,”
SPE Reservoir Eval. Eng.
,
2
(
6
), pp.
565
571
.
122.
Fassihi
,
M. R.
,
Meyers
,
K. O.
, and
Baslie
,
P.
,
1990
, “
Low-Temperature Oxidation of Viscous Crude Oils
,”
SPE Reservoir Eng.
,
5
(
4
), pp.
609
616
.
123.
Fassihi
,
M. R.
,
Brigham
,
W. E.
, and
Ramey
,
H. J.
, Jr.
,
1984
, “
Reaction Kinetics of In-Situ Combustion: Part 2—Modeling
,”
Soc. Pet. Eng. J.
,
24
(
4
), pp.
408
416
.
124.
Akin
,
S.
,
Kok
,
M. V.
,
Bagci
,
S.
, and
Karacan
,
O.
,
2000
, “
Oxidation of Heavy Oil and Their SARA Fractions: Its Role in Modeling In-Situ Combustion
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 1–14,
SPE
Paper No. 63230.
125.
Kok
,
M. V.
, and
Okandan
,
E.
,
1994
, “
Thermal Analysis of Crude Oil-Lignite Mixtures by Differential Scanning Calorimetry
,”
Fuel
,
73
(
4
), pp.
500
504
.
126.
Cinar
,
M.
,
Castanier
,
L. M.
, and
Kovscek
,
A. R.
,
2011
, “
Combustion Kinetics of Heavy Oils in Porous Media
,”
Energy Fuels
,
25
(
10
), pp.
4438
4451
.
127.
Akkutlu
,
I. Y.
, and
Yortsos
,
Y. C.
,
2003
, “
The Dynamics of in-Situ Combustion Fronts in Porous Media
,”
Combust. Flame
,
134
(
3
), pp.
229
247
.
128.
Fassihi
,
M. R.
,
Brigham
,
W. E.
, and
Ramey
,
H. J.
, Jr.
,
1984
, “
Reaction Kinetics of In-Situ Combustion—Part 1: Observations
,”
Soc. Pet. Eng. J.
,
24
(
4
), pp.
399
407
.
129.
Cavanzo
,
E. A.
,
Munoz Navarro
,
S. F.
,
Ordonez
,
A.
, and
Bottia Ramirez
,
H.
,
2014
, “
Kinetics of Wet In-Situ Combustion: A Review of Kinetic Models
,” SPE Heavy and Extra Heavy Oil Conference, Medellíin, Colombia, Sept. 24–26,
SPE
Paper No. 171134.
130.
Adegbesan
,
K.
,
Donnelly
,
J.
,
Moore
,
R.
, and
Bennion
,
D.
,
1986
, “
Liquid Phase Oxidation Kinetics of Oil Sands Bitumen: Models for In Situ Combustion Numerical Simulators
,”
AIChE J.
,
32
(
8
), pp.
1242
1252
.
131.
Sequera
,
B.
,
Moore
,
R.
,
Mehta
,
S.
, and
Ursenbach
,
M.
,
2010
, “
Numerical Simulation of in-Situ Combustion Experiments Operated Under Low Temperature Conditions
,”
J. Can. Pet. Technol.
,
49
(
1
), pp.
55
64
.
132.
Hayashitani
,
M.
,
1978
, “
Thermal Cracking of Athabasca Bitumen
,” Ph.D. thesis, The University of Calgary, Calgary, AB, Canada.
133.
Yang
,
X.
, and
Gates
,
I. D.
,
2009
, “
Combustion Kinetics of Athabasca Bitumen From 1D Combustion Tube Experiments
,”
Nat. Resour. Res.
,
18
(
3
), pp.
193
211
.
134.
Belgrave
,
J.
,
Moore
,
R.
,
Ursenbach
,
M.
, and
Bennion
,
D.
,
1993
, “
A Comprehensive Approach to In-Situ Combustion Modeling
,”
SPE Adv. Technol. Ser.
,
1
(
1
), pp.
98
107
.
135.
Kapadia
,
P. R.
,
Kallos
,
M.
,
Chris
,
L.
, and
Gates
,
I. D.
,
2009
, “
Potential for Hydrogen Generation During In Situ Combustion of Bitumen
,”
EUROPEC/EAGE Conference and Exhibition
, Amsterdam, The Netherlands, june 8–11,
SPE
Paper No. 122028.
136.
Kalateh
,
R.
,
Ogg
,
L.
,
Charkazova
,
M.
, and
Gerogiorgis
,
D. I.
,
2016
, “
A Database and Workflow Integration Methodology for Rapid Evaluation and Selection of Improved Oil Recovery (IOR) Technologies for Heavy Oil Fields
,”
Adv. Eng. Software
,
100
, pp.
176
197
.
137.
Ali
,
H. M. K.
,
Hassan
,
M. A. A.
, and
Alkhider
,
M. D. M.
,
2015
,
Optimization of Cyclic Steam Stimulation (CSS) Using (CMG) Software to Increase the Recovery Factor
,
University of Khartoum
, Khartoum, Sudan.
138.
Bottazzi
,
F.
,
Repetto
,
C.
,
Tita
,
E.
, and
Maugeri
,
G.
,
2013
, “
Downhole Electrical Heating for Heavy Oil Enhanced Recovery: A Successful Application in Offshore Congo
,”
International Petroleum Technology Conference
(
IPTC
), Beijing, China, Mar. 26–28, Paper No. IPTC-16858.
139.
Gadelle
,
C.
,
Burger
,
J.
,
Bardon
,
C. P.
,
Machedon
,
V.
,
Carcoana
,
A.
, and
Petcovici
,
V.
,
1981
, “
Heavy-Oil Recovery by In-Situ Combustion—Two Field Cases in Rumania
,”
J. Pet. Technol.
,
33
(
11
), pp. 2057–2066.
140.
Turta
,
A. T.
, and
Pantazi
,
I. G.
,
1986
, “
Development of the in-Situ Combustion Process on an Industrial Scale at Videle Field, Rumania
,”
SPE Reservoir Eng.
,
1
(
6
), pp.
556
564
.
141.
McQueen
,
G.
,
Parman
,
D.
, and
Williams
,
H.
,
2009
, “
Enhanced Oil Recovery of Shallow Wells With Heavy Oil: A Case Study in Electro Thermal Heating of California Oil Wells
,”
Petroleum and Chemical Industry Conference
(
PCIC
), Anaheim, CA, Sept. 14–16.
You do not currently have access to this content.