Creating complex fracture network by hydraulic fracturing operation in unconventional reservoir development is the key factor of effective exploitation. The mechanism of creating a fracture network is not clear up to today. Conventional hydraulic fracturing theory is based on tensile failure of a rock, and a hydraulic fracture is widely accepted as propagating along the direction of in situ maximum horizontal principal stress in the industry. Based on rock elastic mechanics and fracture mechanics, considering combined tensile and shear failures, the maximum circumferential strain criterion and boundary element method (BEM), the paper studies the induced stress and its variation during a fracture propagation, the interaction between two or more hydraulic fractures, and the interaction between a hydraulic fracture and a natural crack. The paper shows that a propagating fracture will produce induced stresses on surrounding rock and form a stress shadow. Instead of propagation along the direction of maximum horizontal principal stress as a single fracture, the outside two fractures of two or more hydraulic fractures are exclusive and turning away from each other. A natural crack may be awaked and extend at its both tips by a propagating hydraulic fracture before their intersection, and the hydraulic fracture may deflect toward the natural crack. The interaction between a hydraulic fracture and a natural crack depends on the transverse distance between them and the initial length of the crack. The shorter the transverse distance and the longer the crack length are, the higher the possibility of the crack to be awaked is. The research results are helpful in understanding complex fracture network and may be used in determining hydraulic fracture places to create a complex fracture network.

References

1.
Rahman
,
M. M.
, and
Rahman
,
M. K.
,
2012
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Res. Technol.
,
134
(
1
), p.
013101
.10.1115/1.4005239
2.
Tiab
,
D.
,
Lu
,
J.
, and
Nguyen
,
H.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Res. Technol.
,
132
(
1
), p.
012901
.10.1115/1.4000700
3.
Fisher
,
M. K.
,
Davidson
,
B. M.
,
Goodwin
,
A. K.
,
Fielder
,
E. O.
,
Buckler
,
W. S.
, and
Steinsberger
,
N. P.
,
2002
, “
Integrating Fracture Mapping Technologies to Optimize Stimulation in the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2,
SPE
Paper No. 77411.10.2118/77441-MS
4.
Fisher
,
M. K.
,
Heinze
,
J. R.
,
Harris
,
C. D.
,
Davidson
,
B. M.
,
Wright
,
C. A.
, and
Dunn
,
K. P.
,
2005
, “
Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping
,”
J. Pet. Technol.
,
57
(
3
), pp.
41
42
.10.2118/90051-MS
5.
Maxwell
,
S. C.
,
Urbancik
,
T. I.
,
Steinsberger
,
N. P.
, and
Zinno
,
R.
,
2002
, “
Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2, SPE Paper No. 774440.
6.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in The Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Res. Technol.
,
135
(
1
), p.
013402
.10.1016/j.jbiomech.2009.03.035
7.
Warpinski
,
N. R.
,
Mayerhofer
,
M. J.
,
Vincent
,
M. C.
,
Cipolla
,
C. L.
, and
Lolon
,
E. P.
,
2009
, “
Stimulating Unconventional Reservoirs: Maximizing Network Growth While Optimizing Fracture Conductivity
,”
J. Can. Pet. Technol.
,
48
(
10
), pp.
39
51
.10.2118/114173-PA
8.
Kim
,
G. H.
, and
Wang
,
J. Y.
,
2014
, “
Interpretation of Hydraulic Fracturing Pressure in Tight Gas Formations
,”
ASME J. Energy Res. Technol.
,
136
(
3
), p.
032903
.10.1115/1.4026460
9.
Wood
,
D. B.
, and
Junkin
,
G.
,
1970
, “
Stresses and Displacements Around Hydraulically Fractured Well
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
, Houston, TX, Oct. 4–7, SPE Paper No. 3030.
10.
Roussel
,
N.
, and
Sharma
,
M.
,
2011
, “
Optimizing Fracture Spacing and Sequencing in Horizontal Well Fracturing
,”
SPE Prod. Oper.
,
26
(
2
), pp.
173
184
.10.2118/127986-PA
11.
Warpinski
,
N. R.
,
Wolhart
,
S. L.
, and
Wright
,
C. A.
,
2004
, “
Analysis and Prediction of Microseismicity Induced by Hydraulic Fracturing
,”
SPE J.
,
9
(
1
), pp.
24
33
.10.2118/87673-PA
12.
Smith
,
R. A.
, and
Cooper
,
J. F.
,
1989
, “
A Finite Element Model for the Shape Development of Irregular Planar Cracks
,”
Int. J. Pressure Vessels Piping
,
36
(
4
), pp.
315
326
.10.1016/0308-0161(89)90054-9
13.
Sumi
,
Y.
,
Yang
,
C.
, and
Hayashi
,
S.
,
1996
, “
Morphological Aspects of Fatigue Crack Propagation Part I—Computational Procedure
,”
Int. J. Fract.
,
82
(
3
), pp.
205
220
.10.1007/BF00013158
14.
Li
,
G.
,
Allison
,
D.
, and
Soliman
,
M. Y.
,
2011
, “
Geomechanical Study of the Multistage Fracturing Process for Horizontal Wells
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, Paper No. ARMA 11-121.
15.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Res. Technol.
,
136
(
4
), p.
042907
.10.1115/1.4028690
16.
Sneddon
,
I. N.
, and
Elliott
,
H. A.
,
1946
, “
The Opening of a Griffith Crack Under Internal Pressure
,”
Q. Appl. Math.
,
4
(
3
), pp.
262
267
.
17.
Sneddon
,
I. N.
,
1946
, “
The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid
,”
Proc. R. Soc. London, Ser. A
,
187
(
1009
), pp.
229
260
.10.1098/rspa.1946.0077
18.
Warpinski
,
N. R.
, and
Branagan
,
P. T.
,
1989
, “
Altered-Stress Fracturing
,”
J. Pet. Technol.
,
41
(
9
), pp.
990
991
.10.2118/17533-PA
19.
Cheng
,
Y.
,
2012
, “
Mechanical Interaction of Multiple Fractures-Exploring Impacts of the Selection of the Spacing/Number of Perforation Clusters on Horizontal Shale-Gas Wells
,”
SPE J.
,
17
(
04
), pp.
992
1001
.10.2118/125769-PA
20.
Daneshy
,
A. A.
,
2003
, “
Off-Balance Growth: A New Concept in Hydraulic Fracturing
,”
J. Pet. Technol.
,
55
(
04
), pp.
78
85
.10.2118/80992-JPT
21.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
J. Basic Eng.
,
85
(
4
), pp.
519
525
.10.1115/1.3656897
22.
Xue
,
W.
,
2010
, “
Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures
,”
Doctoral dissertation, Texas A&M University
,
College Station, TX
.
You do not currently have access to this content.