Gas-Liquid Cylindrical Cyclone (GLCC©1) separators are becoming increasingly popular as attractive alternatives to conventional separators as they are simple, compact, less expensive, have low-weight, and require little maintenance. However, present studies focus on GLCC designs and applications at relatively lower gas velocities (below the minimum velocity for onset of liquid carry-over in the form of annular/mist flow). With appropriate modifications, GLCCs can be used for wet gas (high gas liquid ratio, GLR) applications, characterized by higher gas velocities, to knock out the liquid droplets from the gas core. The objectives of this study are to design a novel GLCC capable of separating liquid from a wet gas stream; conduct experimental investigations to evaluate the GLCC performance improvement in terms of operational envelope for liquid carry-over; and, quantify the liquid extraction from the gas stream. GLCC design considerations/guidelines for wet gas application are also provided based on the experimental studies at low pressures. This investigation extends the capabilities of compact separators for wet gas applications for insitu gas volume fraction (GVF) greater than 95%.

1.
Kouba, G. E., Shoham, O., and Shirazi, S., 1995, “Design and Performance of Gas-Liquid Cylindrical Cyclone Separators,” Proceedings of the BHR Group 7th International Meeting on Multiphase Flow, Cannes, France, June 7–9, 1995, pp. 307–327.
2.
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2000
, “
Enhanced Mechanistic Model and Field Application Design of Gas-Liquid Cylindrical Cyclone Separators
,”
SPE J.
,
5
(
2
) June 2000, pp.
190
198
.
3.
Mohan
,
R.
,
Wang
,
S.
,
Shoham
,
O.
, and
Kouba
,
G.
,
1998
, “
Design and Performance of Passive Control System for Gas-Liquid Cylindrical Cyclone Separators
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
49
55
.
4.
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
,
Marrelli
,
J. D.
, and
Kouba
,
G.
,
2000
, “
Optimal Control Strategy and Experimental Investigation of Gas-Liquid Compact Separators
,”
SPE J.
,
7
(
2
), June 2002, pp.
170
182
.
5.
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
,
Marrelli
,
J. D.
,
Kouba
,
G. E.
,
2000
, “
Control System Simulators for Gas-Liquid Cylindrical Cyclone Separators
,”
ASME J. Energy Resour. Technol.
,
122
, pp.
177
184
.
6.
Wang
,
S.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Marrelli
,
J. D.
, and
Kouba
,
G. E.
,
2000
, “
Performance Improvement of Gas Liquid Cylindrical Cyclone Separators Using Integrated Level and Pressure Control Systems
,”
ASME J. Energy Resour. Technol.
,
122
, pp.
185
192
.
7.
Chirinos
,
W. A.
,
Gomez
,
L. E.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2000
, “
Liquid Carry-over in Gas-Liquid Cylindrical Cyclone Compact Separators
,”
SPE J.
,
5
(
3
), Sept., pp.
259
267
.
8.
Stewart, A. C., Chamberlain, N. P., and Irshad, M., 1998, “A New Approach to Gas-Liquid Separation,” SPE 50685, presented at the SPE European Petroleum Conference, Hague, Netherlands, October 20–22, 1998.
9.
Meng, W., Chen, T. X., Kouba, G. E., Sarica, C., and Brill, J. P., 2000, “Experimental Study of Low Liquid Loading Gas-Liquid Flow in Near-Horizontal Pipes,” SPE 56466, presented at the SPE 74rd Annual Meeting, Houston, October 3–6, 2000.
10.
Ishii
,
M.
, and
Mishiam
,
K.
,
1989
, “
Droplet Entrainment Correlation in Annular Flow
,”
Int. J. Heat Mass Transf.
,
32
(
10
), p.
1835
1835
.
11.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Int. J. Heat Fluid Flow
,
15
, pp.
346
356
.
12.
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Marrelli
,
J. D.
, and
Kouba
,
G. E.
,
1999
, “
Aspect Ratio Modeling and Design Procedure for GLCC Compact Separators
,”
ASME J. Energy Resour. Technol.
,
121
(
1
), pp.
15
23
.
13.
Magnaudet, J. J., 1997, “The Forces Acting on Bubbles and Rigid Particles,” FEDSM, ASME, Vancouver, Canada, June 22, 1997.
You do not currently have access to this content.