New fuels with high-energy-density are desirable for many combustion applications. Two types are reviewed in this paper, namely, mixtures resulting from addition of certain metallic or nonmetallic elements to conventional hydrocarbon fuels, and newly synthesized hydrocarbon fuels with strained molecular conformations or more densely packed molecular structures. Despite the favorable effects of high-energy content, these materials often exhibit low reactivity and their ability to improve the performance of practical combustion systems relies strongly on their interaction with the dynamics of the surrounding fluid flow. The intensity of the combustion processes of these materials is dictated, in general, by the melting, evaporation, pyrolysis, mixing, and exothermic reactions processes. Unlike other conventional hydrocarbon fuels, all these processes time scales are often comparable with each other, causing difficulties to devise simpler theoretical models to predict the combustion characteristics. Both the advances made in recent years and the needs for future research and development in the field of energetic fuels are discussed.

1.
Antaki
P.
,
1986
, “
Transient Processes in a Rigid Slurry Droplet During Liquid Vaporization and Combustion
,”
Combustion Science and Technology
, Vol.
46
, pp.
113
135
.
2.
Barzykin
V. V.
, and
Merzhanov
A. G.
,
1965
, “
Ignition of Energetic Materials Under Conditions of Complex Heat Exchange
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
816
823
.
3.
Bellan, J., “Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel for Soot Control,” Proceedings to the ONR’s 8th Propulsion Meeting, eds., G. Roy and F. A. Williams, La Jolla, CA. pp. 162–175.
4.
Bhatia
R.
, and
Sirignano
W. A.
,
1995
, “
Flame Propagation in Metal Slurry Sprays
,”
Combustion and Flame
, Vol.
100
, pp.
605
620
.
5.
Bondarchuk
S. S.
,
Vorozhtsov
A. B.
,
Kozlov
E. A.
, and
Feshchenko
Y. V.
,
1965
, “
Two-Phase Flows in the Nozzles of Solid Rocket Motors
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
677
682
.
6.
Brewster, M. Q., Zebrowski, M. A., Schroeder, T. B., and Son, S. F., 1995, “Unsteady Combustion Modeling of Energetic Solids,” AIAA Paper No. 95-2859.
7.
Brill
T. B.
,
1965
, “
Multiphase Chemistry Considerations at the Surface of Burning Nitramine Monopropellants
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
740
751
.
8.
Brooks
K. P.
, and
Beckstead
M. W.
,
1995
, “
Dynamics of Aluminum Combustion
,”
Journal of Propulsion and Power
, Vol.
11
, No.
4
, pp.
769
780
.
9.
Correa
S. M.
, and
Shyy
W.
,
1987
, “
Computational Models and Methods for Continuous Gaseous Turbulent Combustion
,”
Progress in Energy and Combustion Science
, Vol.
13
, pp.
249
292
.
10.
Culick
F. E. C.
,
1967
, “
Calculation of the Admittance Function for a Burning Surface
,”
Astronautica Acta
, Vol.
13
, pp.
221
237
.
11.
Denison
M. R.
, and
Baum
E.
,
1961
, “
A Simplified Model of Unstable Burning in Solid Propellants
,”
ARS Journal
, Vol.
31
, pp.
1112
1122
.
12.
Eaton
P. E.
, and
Cole
T. W.
,
1964
, “
Synthesis of Cubane
,”
Journal of American Chemical Society
, Vol.
86
, pp.
962
964
.
13.
Eaton, P. E., 1994, “An Introduction to Cubane and its Chemistry,” Proceedings to the ONR’s 7th Propulsion Meeting, eds., G. Roy and P. Givi, Bufallo, NY.
14.
Erikson, B., and Beckstead, M. W., 1996, “A Numerical Model of Monopropellant Deflagration Under Unsteady Conditions,” AIAA Paper No. 96-0652.
15.
Flippen-Anderson
J. L.
,
Gilardi
R.
,
George
C.
,
Marchand
A. P.
,
Jin
P. W.
, and
Deshpande
M. N.
,
1988
, “
Structure of a Novel C22H24 Cage Dimer
,”
Acta Crystallographyca
, Sect. C.; Cryst. Struct. Commun., Vol.
C44
, pp.
1617
1619
.
16.
Foote, J. P., Lineberry, Y. C. L., Wu, S., and Winkleman, B. C., 1995, “Investigation of Aluminum Particle combustion for Application to Underwater Propulsion,” Proceedings to the ONR’s 8th Propulsion Meeting, eds. G. Roy and F. A. Williams, La Jolla, CA, pp. 95–104.
17.
Greiner, L., 1960, “Selection of High Performing Propellants for Torpedoes,” ARS Journal, Vol. 30.
18.
Knyazeva
and
Zarko
V. E.
,
1965
, “
Modeling of Combustion of Energetic Materials with Chemically Induced Mechanical Processes
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
791
803
.
19.
Krier
H.
,
T’ien
J. S.
,
Sirignano
W. A.
, and
Summerfield
M.
,
1968
, “
Nonsteady Burning Phenomena of Solid Propellants: Theory and Experiments
,”
AIAA Journal
, Vol.
6
, pp.
278
285
.
20.
Kubota
N.
,
1965
, “
Combustion of Energetic Azide Polymers
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
593
599
.
21.
Kubota
N.
,
1995
, “
Combustion of Energetic Azide Polymers
,”
Journal of Propulsion and Power
, Vol.
11
, No.
4
pp.
677
682
.
22.
Kuo, K. K., 1986, Principles of Combustion, Wiley & Sons, Inc., New York, NY.
23.
Law
C. K.
, and
Williams
F. A.
,
1972
, “
Kinetics and Convection in the Combustion of the Alkane Droplets
,”
Combustion and Flame
, Vol.
19
, pp.
393
405
.
24.
Law, C. K., 1995a, “Vaporization and Combustion of High-Energy-Density Liquid Propellants,” Plenary Paper, Proceedings of the 35th Israel Annual Conference on Aerosol Science, Israel.
25.
Law, C. K., Sung, C. J., Wang, H., and Zhu, D. L., 1995b, “Combustion Studies of Energetic Liquid Materials,” Proceedings of the ONR’s 8th Propulsion Meeting, eds., G. Roy and F. A. Williams, La Jolla, CA. pp. 185–191.
26.
Lee
A.
, and
Law
C. K.
,
1991
, “
Gasification and Shell Characteristics in Slurry Droplet Burning
,”
Combustion and Flame
, Vol.
85
, pp.
77
93
.
27.
Liau
Y.-C.
, and
Yang
V.
,
1995
, “
Analysis of RDX Monopropellant Combustion With Two-Phase Surface Reactions
,”
Journal of Propulsion and Power
, Vol.
11
, pp.
729
739
.
28.
Libby, P. A., and Williams, F. A., eds., 1994, Turbulent Reacting Flows, Academic Press, New York, NY.
29.
Lupoglazoff, N., and Vuillot, F., 1996, “Parietal Vortex Shedding as a Cause of Instability for Long Solid Propellant Motors—Numerical Simulations and Comparisons with Firing Tests,” AIAA Paper No. 96-0761.
30.
Macek, A., 1967, “Fundamental of Combustion of Single Aluminum and Beryllium Particles,” Eleventh Symposium (International) on Combustion, pp. 203–213.
31.
Macek
A.
, and
Semple
J. M.
,
1969
, “
Combustion of Boron Particles at Atmospheric Pressure
,”
Combustion Science and Technology
, Vol.
1
, pp.
181
191
.
32.
Marchand
A. P.
,
Zope
A.
,
Zaragoza
F.
,
Bott
S. G.
,
Ammon
H. L.
, and
Du
Z.
,
1994
, “
Synthesis, Characterization and Crystal Density Modelling of Four C22H24 Cage-Functionalized Alkenes
,”
Tetrahedron
, Vol.
50
, pp.
1687
1698
.
33.
Marchand, A. P., 1995, “Plato’s Solid, Eaton’s Cage: The Cubane Saga,” The Chemical Intelligencer, Springer-Verlag, Oct., pp. 8–17.
34.
Marchand
A. P.
,
1995
, “
Polycyclic Cage Compounds: Regeants, Substrates and Materials for the 21st Century
,”
Aldrichchimica Acta
, Vol.
28
, No.
4
, pp.
95
104
.
35.
Miller
M. S.
,
1982
, “
In Search of an Idealized Model of Homogeneous Solid Propellant Combustion
,”
Combustion and Flame
, Vol.
46
, pp.
51
73
.
36.
Moriarty, R. M., and Mungala, S. R., 1993, “Strained Hydrocarbons. Benzvalene and Derivatives,” Proceedings to the ONR’s 6th Propulsion Meeting, Bufallo, NY, pp. 1–5.
37.
Novikov
S. S.
,
Pokhil
P. F.
,
Sukhanov
L. A.
, and
Ryasantsev
Yu. S.
,
1968
, “
A Model of Intermittent Unsteady Combustion Zones of Composite Condensed System
,”
Journal of Applied Mathematics and Physics
, Vol.
3
, pp.
128
133
.
38.
Olsen, S. E., and Beckstead, M. W., 1995, “Burn Time Measurements of Single Aluminum Particle in Stream and Carbon Dioxide Mixtures,” AIAA Paper No. 95-2715.
39.
Oran, E. S., and Boris, J. P., 1987, Numerical Simulation of Reactive Flow, Elsevier.
40.
Parry, D. L., and Brewster, M. Q., 1991, “Optical Constants of AI2O3 Smoke in Propellant Flames,” AIAA Journal of Thermophysics, Vol. 5, No. 2.
41.
Peters, N., and Rogg, B., eds., 1993, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag.
42.
Price
E. W.
,
1969
, “
Relevance of Analytical Models for Perturbations of Combustion of Solid Propellants
,”
AIAA Journal
, Vol.
7
, pp.
153
154
.
43.
Price, E. W., 1984, “Combustion of Metallized Propellants,” Fundamentals of Solid-Propellants Combustion, eds., K. K. Kuo and M. Summerfield, AIAA Progress in Astronautics and Aeronautics, Vol. 90.
44.
Roberts
T. A.
,
Burton
R. L.
, and
Krier
H.
,
1993
, “
Ignition and Combustion of Aluminum/Magnezium Alloy Particles in O2 at High Pressures
,”
Combustion and Flame
, Vol.
92
, No.
1–2
, pp.
48
61
.
45.
Segal, C., Friedauer, M. J., Udaykumar, H. S., and Shyy, W., 1995, “Combustion of High-Energy Fuels in High Speed Flows,” Proceedings to the ONR’s 8th Propulsion Meeting, eds., G. Roy and F. A. Williams, La Jolla, CA, pp. 192–199.
46.
Shyu
I. M.
, and
Liu
T. K.
,
1995
, “
Combustion Characteristics of GAP-Coated Boron Particles and the Fuel-Rich Solid Propellant
,”
Combustion and Flame
, Vol.
100
, No.
4
, pp.
635
645
.
47.
Shyy, W., 1994, Computational Modeling for Fluid Flow and Interfacial Transport, Elsevier.
48.
Shyy
W.
,
Correa
S. M.
, and
Braaten
M. E.
,
1988
, “
Computation of Flow in a Gas Turbine Combustor
,”
Combustion Science and Technology
, Vol.
58
, pp.
97
117
.
49.
Shyy, W., Udaykumar, H. S., Rao, M. M., and Smith, R. W., 1996, Computational Fluid Dynamics with Moving Boundaries, Taylor & Francis.
50.
Spalding, D. B., 1979, Combustion and Mass Transfer, Pergamon.
51.
Smoot, L. D., and Smith, P. J., 1985, Coal Combustion and Gasification, Plenum.
52.
Smooke, M. D., ed., 1991, Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer-Verlag.
53.
Takahashi
F.
,
Heilweil
I. J.
, and
Dryer
F. L.
,
1989
, “
Disruptive Burning Mechanism of Free Slurry Droplets
,”
Combustion Science and Technology
, Vol.
65
, pp.
151
165
.
54.
Turns
S. R.
, and
Wong
S. C.
,
1987
, “
Combustion of Aluminum-Based Aglomerates
,”
Combustion Science and Technology
, Vol.
54
, pp.
299
318
.
55.
Willer, R. L., Day, R. S., and Marchand, A. P., “Improved TPE Binder/Crystalline Modifiers for TPE Based Solid Propellant Binders,” U.S. Patent Application 07/954,361 (Thiokol Corporation), Application files September 29, 1992; U. S. Patent No. 5,368,662 (Thiokol Corporation), Patent issued November 29, 1994; see Chem. Abstr. 1995, 122, P164883d.
56.
Wilson, R. P., Jr., and Williams, F. A., 1971, “Experimental Study of the Combustion of Single Aluminum Particles in 02/Ar,” Thirteenth Symposium (International) on Combustion, pp. 833–845.
57.
Wong
S. C.
, and
Turns
S. R.
,
1986
, “
Ignition of Aluminum Slurry Droplets
,”
Combustion Science and Technology
, Vol.
52
, pp.
221
242
.
58.
Yang, V., and Zarko, V. E., eds., 1995, Special Issue of Journal of Propulsion and Power, Vol. 11, No. 4.
59.
Zarko, V. E., Chertischev, V. V., and Zyryanov, V. Ya., 1996, “Dispersion of the Surface Layer During Combustion of Homogeneous Propellants,” AIAA Paper No. 96-0814.
60.
Zhou, N., and Krishnan, A., 1996, “A Numerical Model for Endothermic Fuel Flows With Heterogeneous Catalysis,” AIAA Paper No. 96-0650.
This content is only available via PDF.
You do not currently have access to this content.