Abstract

This study investigates the application of microbeads as an innovative encapsulation technique to protect electronic components from harsh mechanical strain. Traditional encapsulation methods using hard epoxy provide substantial mechanical support but create thermal expansion mismatch issues, potentially leading to electronic component failure. We explore the use of finely powdered microbeads to achieve protective structures combining stiffness and energy absorption. The research focuses on key variables, including microbead size, microbead roughness, compaction of microbeads, and circuit board mounting in the encapsulation, all of which influence the encapsulation’s effectiveness. Experimental setups and testing protocols were developed to assess the performance of various microbead materials under different impact conditions. Results demonstrate that microbead encapsulation significantly reduces strain on circuit boards, minimizing the risk of damage during mechanical shocks. However, challenges remain, such as optimizing microbead characteristics and modeling their behavior within large-scale circuit board assemblies. Despite these challenges, the findings suggest that microbead encapsulation offers a promising alternative to conventional methods, enhancing the durability and reliability of electronic components in high-stress environments.

References

1.
Lall
,
P.
,
Panchagade
,
D. R.
,
Choudhary
,
P.
,
Gupte
,
S.
, and
Suhling
,
J. C.
,
2008
, “
Failure-Envelope Approach to Modeling Shock and Vibration Survivability of Electronic and MEMS Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
104
113
.10.1109/TCAPT.2008.916804
2.
Chao
,
N. H.
, and
Carlucci
,
D. E.
,
2019
, “
New Electronic Packaging Method for Potted Guidance Electronics to Sustain Temperature Cycling and Survive High-G Applications
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
021003
.10.1115/1.4042471
3.
Chong
,
D. Y. R.
,
Toh
,
H. J.
,
Lim
,
B. K.
,
Low
,
P. T.
,
Pang
,
J. H.
,
Che
,
F. X.
,
Xiong
,
B. S.
, and
Xu
,
L.
,
2005
, “
Drop Reliability Performance Assessment for PCB Assemblies of Chip Scale Packages (CSP)
,”
7th Electronic Packaging Technology Conference
,
Singapore
, Dec. 7–9, pp.
262
269
.10.1109/EPTC.2005.1614404
4.
Lim
,
C. T.
,
Ang
,
C. W.
,
Tan
,
L. B.
,
Seah
,
S. K. W.
, and
Wong
,
E. H.
,
2003
, “
Drop Impact Survey of Portable Electronic Products
,”
53rd Electronic Components and Technology Conference, 2003 Proceedings
, New Orleans, LA, May 27–30, pp.
113
120
.10.1109/ECTC.2003.1216265
5.
Varghese
,
J.
, and
Dasgupta
,
A.
,
2003
, “
Test Methodology for Impact Testing of Portable Electronic Products
,”
ASME
Paper No. IMECE2003-41844.10.1115/IMECE2003-41844
6.
Zhou
,
C. Y.
, and
Yu
,
T. X.
,
2009
, “
Analytical Models for Shock Isolation of Typical Components in Portable Electronics
,”
Int. J. Impact Eng.
,
36
(
12
), pp.
1377
1384
.10.1016/j.ijimpeng.2009.03.013
7.
Verberne
,
P.
, and
Meguid
,
S. A.
,
2020
, “
Dynamics of Precision Guided Projectile Launch: Solid–Solid Interaction
,”
Int. J. Str. Stab. Dyn.
,
20
(
14
), p.
2043001
.10.1142/S0219455420430014
8.
Verberne
,
P.
, and
Meguid
,
S. A.
,
2021
, “
Dynamics of Precision-Guided Projectile Launch: Fluid–Structure Interaction
,”
Acta Mech.
,
232
(
3
), pp.
1147
1161
.10.1007/s00707-020-02821-5
9.
Verberne
,
P.
,
Meguid
,
S. A.
, and
Elsayed
,
E. A.
,
2021
, “
Survivability of Embedded Microelectronics in Precision Guided Projectiles: Modeling and Characterization
,”
Int. J. Impact Eng.
,
154
, p.
103864
.10.1016/j.ijimpeng.2021.103864
10.
Chakka
,
V.
,
Trabia
,
M. B.
,
O’Toole
,
B.
,
Sridharala
,
S.
,
Ladkany
,
S.
, and
Chowdhury
,
M.
,
2008
, “
Modeling and Reduction of Shocks on Electronic Components Within a Projectile
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1326
1338
.10.1016/j.ijimpeng.2007.07.005
11.
Neidigk
,
M.
,
2013
,
Numerical Analysis of Surface Mount Electronics With Viscoelastic Epoxy Underfills and Potting
,
University of New Mexico
, Albuquerque, NM.
12.
Kang
,
S. K.
,
2001
, “
Tape-Automated Bonding: Materials and Technologies
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
, Amsterdam, The Netherlands, pp.
9088
9093
.
13.
Teh
,
P. L.
,
Mariatti
,
M.
,
Akil
,
H. M.
,
Yeoh
,
C. K.
,
Seetharamu
,
K. N.
,
Wagiman
,
A. N. R.
, and
Beh
,
K. S.
,
2007
, “
The Properties of Epoxy Resin Coated Silica Fillers Composites
,”
Mater. Lett.
,
61
(
11–12
), pp.
2156
2158
.10.1016/j.matlet.2006.08.036
14.
Meguid
,
S. A.
,
Zhuo
,
C.
, and
Yang
,
F.
,
2014
, “
Effective Mitigation of Shock Loads in Embedded Electronic Packaging Using Bilayered Potting Materials
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041010
.10.1115/1.4026542
15.
Christou
,
G. A.
,
Young
,
L. R.
,
Goel
,
R.
,
Vechart
,
A. P.
, and
Jérusalem
,
A.
,
2012
, “
Shock Attenuation of PMMA Sandwich Panels Filled With Soda-Lime Glass Beads: A Fluid-Structure Interaction Continuum Model Simulation
,”
Int. J. Impact Eng.
,
47
, pp.
48
59
.10.1016/j.ijimpeng.2012.03.003
16.
Bian
,
J.
, and
Jing
,
X.
,
2014
, “
Biomimetic Design of Woodpecker for Shock and Vibration Protection
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
, Bali, Indonesia, Dec. 5–10, pp.
2238
2243
.10.1109/ROBIO.2014.7090670
17.
Yoon
,
S.-H.
,
Roh
,
J.-E.
, and
Kim
,
K. L.
,
2009
, “
Woodpecker-Inspired Shock Isolation by Microgranular Bed
,”
J. Phys. D: Appl. Phys.
,
42
(
3
), p.
035501
.10.1088/0022-3727/42/3/035501
18.
Yoon
,
S.-H.
, and
Kim
,
K. L.
,
2006
, “
Passive Low Pass Filtering Effect of Mechanical Vibrations by a Granular Bed Composed of Microglass Beads
,”
Appl. Phys. Lett.
,
89
(
2
), p.
021906
.10.1063/1.2220012
19.
Gagnon
,
L.
,
Morandini
,
M.
, and
Ghiringhelli
,
G. L.
,
2019
, “
A Review of Particle Damping Modeling and Testing
,”
J. Sound Vib.
,
459
, p.
114865
.10.1016/j.jsv.2019.114865
20.
Lu
,
Z.
,
Wang
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2018
, “
Particle Impact Dampers: Past, Present, and Future
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2058
.10.1002/stc.2058
21.
Michon
,
G.
,
Almajid
,
A.
, and
Aridon
,
G.
,
2013
, “
Soft Hollow Particle Damping Identification in Honeycomb Structures
,”
J. Sound Vib.
,
332
(
3
), pp.
536
544
.10.1016/j.jsv.2012.09.024
22.
Saeki
,
M.
,
2002
, “
Impact Damping With Granular Materials in A Horizontally Vibrating System
,”
J. Sound Vib.
,
251
(
1
), pp.
153
161
.10.1006/jsvi.2001.3985
23.
Xu
,
Z.
,
Wang
,
M. Y.
, and
Chen
,
T.
,
2005
, “
Particle Damping for Passive Vibration Suppression: Numerical Modelling and Experimental Investigation
,”
J. Sound Vib.
,
279
(
3–5
), pp.
1097
1120
.10.1016/j.jsv.2003.11.023
24.
Sanchez
,
M.
, and
Carlevaro
,
C. M.
,
2013
, “
Nonlinear Dynamic Analysis of an Optimal Particle Damper
,”
J. Sound Vib.
, 332(8), pp.
2070
2080
.10.1016/j.jsv.2012.09.042
25.
Masri
,
S. F.
, and
Ibrahim
,
A. M.
,
1973
, “
Response of the Impact Damper to Stationary Random Excitation
,”
J. Acoust. Soc. Am.
,
53
(
1
), pp.
200
211
.10.1121/1.1913319
26.
Salueña
,
C.
,
Pöschel
,
T.
, and
Esipov
,
S. E.
,
1999
, “
Dissipative Properties of Vibrated Granular Materials
,”
Phys. Rev. E
,
59
(
4
), pp.
4422
4425
.10.1103/PhysRevE.59.4422
27.
Misrak
,
A.
,
Bhandari
,
R.
, and
Agonafer
,
D.
,
2023
, “
Viscoelastic Influence on the Board Level Assessment of Wafer Level Packages Under Drop Impact and Under Thermal Cycling
,”
ASME J. Electron. Packag.
,
145
(
1
), p.
011204
.10.1115/1.4054784
28.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
In 't Veld
,
P. J.
, et al.,
2022
, “
LAMMPS - A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.10.1016/j.cpc.2021.108171
29.
Garner
,
S.
,
Ruiz
,
E.
,
Strong
,
J.
, and
Zavaliangos
,
A.
,
2014
, “
Mechanisms of Crack Formation in Die Compacted Powders During Unloading and Ejection: An Experimental and Modeling Comparison Between Standard Straight and Tapered Dies
,”
Powder Technol.
,
264
, pp.
114
127
.10.1016/j.powtec.2014.04.086
30.
Parab
,
N. D.
,
Guo
,
Z.
,
Hudspeth
,
M. C.
,
Claus
,
B. J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Chen
,
W. W.
,
2017
, “
Fracture Mechanisms of Glass Particles Under Dynamic Compression
,”
Int. J. Impact Eng.
,
106
, pp.
146
154
.10.1016/j.ijimpeng.2017.03.021
You do not currently have access to this content.