Abstract

Recent advances in the micro-electronics industry have increased the demand for smaller and more compact package devices with higher performance. This paper presents an analytical multiparametric design optimization approach for the miniaturization of flip-chip package, while considering the filling time of the subsequent underfill encapsulation process. The design optimization approach was based on the latest regional segregation-based analytical filling time model. Numerical simulation was conducted to verify the governed analytical model. The discrepancies in the filling times are less than 9.9%, and the predicted critical bump pitch has a low deviation of 4.1%, affirming that both the analytical and numerical models were in great consensus. The variation effects of bump pitch, gap height, and contact angle on the filling time were analyzed and discussed thoroughly. Both the critical bump pitch and the critical gap height were computed and fitted into respective empirical equations. Subsequently, a new multiparametric design optimization approach based on the thresholding and criticality of underfill parameters was proposed to determine the optimum parameters that yield to the most compact flip-chip package with acceptable low filling time during the encapsulation process. Lastly, this proposed optimization technique was tested on the four flip-chips used in a previously published underfill experiment.

References

1.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2007
, “
Recent Advances in Modeling the Underfill Process in Flip-Chip Packaging
,”
Microelectron. J.
,
38
(
1
), pp.
67
75
.10.1016/j.mejo.2006.09.017
2.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2004
, “
Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability
,”
IEEE Trans. Adv. Packaging
,
27
(
3
), pp.
515
524
.10.1109/TADVP.2004.831870
3.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2007
, “
A Theoretical Analysis of the Concept of Critical Clearance Toward a Design Methodology for the Flip-Chip Package
,”
ASME J. Electron. Packaging Trans. ASME
,
129
(
4
), pp.
473
478
.10.1115/1.2804098
4.
Yao
,
X. J.
,
Wang
,
Z. D.
, and
Zhang
,
W. J.
,
2014
, “
A New Analysis of the Capillary Driving Pressure for Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
4
(
9
), pp.
1534
1544
.10.1109/TCPMT.2014.2339493
5.
Ng
,
F. C.
, and
Abas
,
M. A.
,
2022
, “
Underfill Flow in Flip-Chip Encapsulation Process: A Review
,”
ASME J. Electron. Packag
.,
144
(
1
), p.
010803
.10.1115/1.4050697
6.
Young
,
W. B.
, and
Yang
,
W. L.
,
2002
, “
The Effect of Solder Bump Pitch on the Underfill Flow
,”
IEEE Trans. Adv. Packaging
,
25
(
4
), pp.
537
542
.10.1109/TADVP.2002.807564
7.
Ng
,
F. C.
,
Abas
,
M. A.
, and
Abdullah
,
M. Z.
,
2019
, “
Filling Efficiency of Flip-Chip Underfill Encapsulation Process
,”
Soldering Surf. Mount Technol.
,
32
(
1
), pp.
10
18
.10.1108/SSMT-07-2019-0026
8.
Lee
,
S. H.
,
Lee
,
H. J.
,
Kim
,
J. M.
, and
Shin
,
Y. E.
,
2011
, “
Dynamic Filling Characteristics of a Capillary Driven Underfill Process in Flip-Chip Packaging
,”
Mater. Trans.
,
52
(
10
), pp.
1998
2003
.10.2320/matertrans.M2011151
9.
Kim
,
Y. B.
, and
Sung
,
J.
,
2012
, “
Capillary-Driven Micro Flows for the Underfill Process in Microelectronics Packaging
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3751
3759
.10.1007/s12206-012-1001-7
10.
Ng
,
F. C.
,
Ali
,
M. Y. T.
,
Abas
,
A.
,
Khor
,
C. Y.
,
Samsudin
,
Z.
, and
Abdullah
,
M. Z.
,
2019
, “
A Novel Analytical Filling Time Chart for Design Optimization of Flip-Chip Underfill Encapsulation Process
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7–8
), pp.
3521
3530
.10.1007/s00170-019-04573-6
11.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Mujeebu
,
M. A.
,
2012
, “
Influence of Gap Height in Flip Chip Underfill Process With non-Newtonian Flow Between Two Parallel Plates
,”
ASME J. Electron. Packag
.,
134
(
1
), p.
011003
.10.1115/1.4005914
12.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2012
, “
Underfill Process for Two Parallel Plates and Flip Chip Packaging
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1205
1212
.10.1016/j.icheatmasstransfer.2012.07.006
13.
Young
,
W. B.
, and
Yang
,
W. L.
,
2006
, “
Underfill of Flip-Chip: The Effect of Contact Angle and Solder Bump Arrangement
,”
IEEE Trans. Adv. Packaging
,
29
(
3
), pp.
647
653
.10.1109/TADVP.2006.879495
14.
Wang
,
J.
,
2002
, “
Underfill of Flip Chip on Organic Substrate: Viscosity, Surface Tension, and Contact Angle
,”
Microelectron. Reliab.
,
42
(
2
), pp.
293
299
.10.1016/S0026-2714(01)00231-1
15.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Leong
,
W. C.
,
2012
, “
Fluid/Structure Interaction Analysis of the Effects of Solder Bump Shapes and Input/Output Counts on Moulded Packaging
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
2
(
4
), pp.
604
616
.10.1109/TCPMT.2011.2174237
16.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2018
, “
Effect of Solder Bump Shapes on Underfill Flow in Flip-Chip Encapsulation Using Analytical, Numerical and PIV Experimental Approaches
,”
Microelectron. Reliab.
,
81
, pp.
41
63
.10.1016/j.microrel.2017.12.025
17.
Ng
,
F. C.
,
Abas
,
M. A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
CUF Scaling Effect on Contact Angle and Threshold Pressure
,”
Soldering Surf. Mount Technol.
,
29
(
4
), pp.
173
190
.10.1108/SSMT-09-2016-0020
18.
Han
,
S.
, and
Wang
,
K. K.
,
1997
, “
Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips
,”
IEEE Trans. Compon. Packaging Manuf. Technol. Part B
,
20
(
4
), pp.
424
433
.10.1109/96.641511
19.
Khor
,
C. Y.
, and
Abdullah
,
M. Z.
,
2012
, “
Optimization of IC Encapsulation Considering Fluid/Structure Interaction Using Response Surface Methodology
,”
Simul. Modell. Pract. Theory
,
29
, pp.
109
122
.10.1016/j.simpat.2012.07.003
20.
Ishak
,
M. H. H.
,
Ismail
,
F.
,
Aziz
,
M. S. A.
,
Abdullah
,
M. Z.
, and
Abas
,
A.
,
2019
, “
Optimization of 3D IC Stacking Chip on Molded Encapsulation Process: A Response Surface Methodology Approach
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1139
1153
.10.1007/s00170-019-03525-4
21.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2005
, “
An Analytical Model for Predicting the Underfill Flow Characteristics in Flip-Chip Encapsulation
,”
IEEE Trans. Adv. Packaging
,
28
(
3
), pp.
481
487
.10.1109/TADVP.2005.848385
22.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2019
, “
Regional Segregation With Spatial Considerations-Based Analytical Filling Time Model for Non-Newtonian Power-Law Underfill Fluid in Flip-Chip Encapsulation
,”
ASME J. Electron. Packaging
,
141
(
4
), p.
041009
.10.1115/1.4044817
23.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2008
, “
Experimental Verification of Models for Underfill Flow Driven by Capillary Forces in Flip-Chip Packaging
,”
Microelectron. Reliab.
,
48
(
3
), pp.
425
430
.10.1016/j.microrel.2007.06.006
24.
Nguyen
,
L.
,
Quentin
,
C.
,
Fine
,
P.
,
Cobb
,
B.
,
Bayyuk
,
S.
,
Yang
,
H.
, and
Bidstrup-Allen
,
S. A.
,
1999
, “
Underfill of Flip Chip on Laminates: Simulation and Validation
,”
IEEE Trans. Compon. Packaging Technol.
,
22
(
2
), pp.
168
176
.10.1109/6144.774725
25.
Young
,
W. B.
,
2003
, “
Anisotropic Behavior of the Capillary Action in Flip Chip Underfill
,”
Microelectron. J.
,
34
(
11
), pp.
1031
1036
.10.1016/j.mejo.2003.09.001
26.
Luo
,
W.
,
Liang
,
J.
,
Zhang
,
J. Y.
, and
Zhou
,
H. M.
,
2016
, “
An Analytical Model for the Underfill Flow Driven by Capillary Forces in Chip Packaging
,”
2016 17th International Conference on Electronic Packaging Technology, ICEPT 2016
, Wuhan, China, Aug. 16–19, pp.
1381
1386
.10.1109/ICEPT.2016.7583381
27.
Wang
,
J.
,
2007
, “
The Effects of Rheological and Wetting Properties on Underfill Filler Settling and Flow Voids in Flip Chip Packages
,”
Microelectron. Reliab.
,
47
(
12
), pp.
1958
1966
.10.1016/j.microrel.2007.04.016
28.
Ng
,
F. C.
,
Abas
,
A.
,
Gan
,
Z. L.
,
Abdullah
,
M. Z.
,
Che Ani
,
F.
, and
Yusuf Tura Ali
,
M.
,
2017
, “
Discrete Phase Method Study of Ball Grid Array Underfill Process Using Nano-Silica Filler-Reinforced Composite-Encapsulant With Varying Filler Loadings
,”
Microelectron. Reliab.
,
72
, pp.
45
64
.10.1016/j.microrel.2017.03.034
29.
Ng
,
F. C.
, and
Abas
,
M. A.
,
2021
, “
Surface Energetic-Based Analytical Filling Time Model for Flip-Chip Underfill Process
,”
Soldering Surf. Mount Technol.
,
33
(
5
), pp.
281
290
.10.1108/SSMT-10-2020-0042
30.
Yao
,
X. J.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Zhou
,
X.
,
2014
, “
A New Model for Permeability of Porous Medium in the Case of Flip-Chip Packaging
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
4
(
8
), pp.
1265
1275
.10.1109/TCPMT.2014.2316537
31.
Yao
,
X. J.
, and
Zhang
,
W. J.
,
2018
, “
An Analytical Model for Permeability of Underfill Flow in Flip-Chip Packaging With Consideration of the Actual Specific Surface and Tortuosity
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
8
(
8
), pp.
1507
1514
.10.1109/TCPMT.2018.2843808
32.
Ng
,
F. C.
,
Zawawi
,
M. H.
, and
Abas
,
M. A.
,
2020
, “
Spatial Analysis of Underfill Flow in Flip-Chip Encapsulation
,”
Soldering Surf. Mount Technol.
,
33
(
2
), pp.
112
127
.10.1108/SSMT-05-2020-0017
33.
Ng
,
F. C.
,
Zawawi
,
M. H.
,
Tung
,
L. H.
,
Abas
,
M. A.
, and
Abdullah
,
M. Z.
,
2020
, “
Symmetrical Unit-Cell Numerical Approach for Flip-Chip Underfill Flow Simulation
,”
CFD Lett.
,
12
(
8
), pp.
55
63
.10.37934/cfdl.12.8.5563
You do not currently have access to this content.