Abstract

Boiling heat transfer has been a popular topic for decades because of its ability to remove a significant amount of thermal energy while maintaining a low wall superheat during the liquid phase change. Such boiling mechanisms can be tailored by engineering new boiling substrates through surface wettability modification and/or microscale feature installation. Here, we create new types of heterogeneous boiling surfaces that integrate vertical gradient micropores on macroscale fins by using a template-free electrodeposition method. The gradient morphology and corresponding gradient wettability simultaneously enable bubble nucleation on the top pores and capillary wicking through the bottom pores. With these unique wetting characteristics, we find that the gradient pores installed at the trench bottom demonstrate the most significant boiling enhancement in critical heat flux and heat transfer coefficients by 160% and 600%, respectively. This enhancement can be attributed to the microflow-enhanced nature of bubble departures around the fins while isolating bubble nucleation and liquid supply through gradient pores. These results provide fundamental insights into boiling mechanisms using porous media and the potential for future works that can optimize the design of multidimensional heterogeneous surfaces to engineer flow patterns and boiling mechanisms accordingly.

References

1.
Mudawar
,
I.
,
2013
, “
Recent Advances in High-Flux, Two-Phase Thermal Management
,”
ASME J. Thermal Sci. Eng. Appl.
, 5(2), p.
021012
.10.1115/1.4023599
2.
Mudawar
,
I.
,
2011
, “Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations,”
ASME
Paper No. AJTEC2011-44005.10.1115/AJTEC2011-44005
3.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
, 133(4), p.
041002
.10.1115/1.4005300
4.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
, 24(2), pp.
122
141
.10.1109/6144.926375
5.
Seon Ahn
,
H.
, and
Hwan Kim
,
M.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer-Trans. ASME
, 134(2), p.
024001
.10.1115/1.4005065
6.
Xie
,
S.
,
Shahmohammadi Beni
,
M.
,
Cai
,
J.
, and
Zhao
,
J.
,
2018
, “
Review of Critical-Heat-Flux Enhancement Methods
,”
Int. J. Heat Mass Transfer
, 122, pp.
275
289
.10.1016/j.ijheatmasstransfer.2018.01.116
7.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
, 108(B), pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
8.
Shi
,
J.
,
Jia
,
X.
,
Feng
,
D.
,
Chen
,
Z.
, and
Dang
,
C.
,
2020
, “
Wettability Effect on Pool Boiling Heat Transfer Using a Multiscale Copper Foam Surface
,”
Int. J. Heat Mass Transfer
, 146, p.
118726
.10.1016/j.ijheatmasstransfer.2019.118726
9.
Teodori
,
E.
,
Valente
,
T.
,
Malavasi
,
I.
,
Moita
,
A. S.
,
Marengo
,
M.
, and
Moreira
,
A. L. N.
,
2017
, “
Effect of Extreme Wetting Scenarios on Pool Boiling Conditions
,”
Appl. Therm. Eng.
, 115(25), pp.
1424
1437
.10.1016/j.applthermaleng.2016.11.079
10.
Liang
,
G.
, and
Mudawar
,
I.
,
2018
, “
Pool Boiling Critical Heat Flux (CHF) – Part 2: Assessment of Models and Correlations
,”
Int. J. Heat Mass Transfer
, 117, pp.
1368
1383
.10.1016/j.ijheatmasstransfer.2017.09.073
11.
Liang
,
G.
, and
Mudawar
,
I.
,
2018
, “
Pool Boiling Critical Heat Flux (CHF) – Part 1: Review of Mechanisms, Models, and Correlations
,”
Int. J. Heat Mass Transfer
, 117, pp.
1352
1367
.10.1016/j.ijheatmasstransfer.2017.09.134
12.
Zhang
,
C.
,
Zhou
,
W.
,
Wang
,
Q.
,
Wang
,
H.
,
Tang
,
Y.
, and
Hui
,
K. S.
,
2013
, “
Comparison of Static Contact Angle of Various Metal Foams and Porous Copper Fiber Sintered Sheet
,”
Appl. Surf. Sci.
, 276, pp.
377
382
.10.1016/j.apsusc.2013.03.101
13.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
, 123(6), pp.
1071
1079
.10.1115/1.1409265
14.
Bourdon
,
B.
,
Rioboo
,
R.
,
Marengo
,
M.
,
Gosselin
,
E.
, and
De Coninck
,
J.
,
2012
, “
Influence of the Wettability on the Boiling Onset
,”
Langmuir
,
28
(
2
), pp.
1618
1624
.10.1021/la203636a
15.
Bourdon
,
B.
,
DiMarco
,
P.
,
Rioboo
,
R.
,
Marengo
,
M.
, and
DeConinck
,
J.
,
2013
, “
Enhancing the Onset of Pool Boiling by Wettability Modification on Nanometrically Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
, 45, pp.
11
15
.10.1016/j.icheatmasstransfer.2013.04.009
16.
Bourdon
,
B.
,
Bertrand
,
E.
,
DiMarco
,
P.
,
Marengo
,
M.
,
Rioboo
,
R.
, and
DeConinck
,
J.
,
2015
, “
Wettability Influence on the Onset Temperature of Pool Boiling: Experimental Evidence Onto Ultra-Smooth Surfaces
,”
Adv. Colloid Interface Sci.
, 221, pp.
34
40
.10.1016/j.cis.2015.04.004
17.
Jo
,
H. J.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Kim
,
S.
,
Kang
,
S. H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2009
, “
Experimental Study of Boiling Phenomena by Micro/Milli Hydrophobic Dot on the Silicon Surface in Pool Boiling
,”
ASME
Paper No. ICNMM2009-82221.10.1115/ICNMM2009-82221
18.
Jo
,
H. J.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J. S.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of Pool Boiling for Enhancing the Boiling Heat Transfer by Hydrophobic Dots on Silicon Surface
,”
Trans. Korean Soc. Mech. Eng. B
, 34(6), pp.
655
663
.10.3795/KSMEB.2010.34.6.655
19.
Choi
,
C. H.
,
David
,
M.
,
Gao
,
Z.
,
Chang
,
A.
,
Allen
,
M.
,
Wang
,
H.
, and
Chang
,
C. H.
,
2016
, “
Large-Scale Generation of Patterned Bubble Arrays on Printed Bi-Functional Boiling Surfaces
,”
Sci. Rep.
, 6, p.
23760
.10.1038/srep23760
20.
Dai
,
X.
,
Huang
,
X.
,
Yang
,
F.
,
Li
,
X.
,
Sightler
,
J.
,
Yang
,
Y.
, and
Li
,
C.
,
2013
, “
Enhanced Nucleate Boiling on Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings
,”
Appl. Phys. Lett.
,
102
(
16
), p.
161605
.10.1063/1.4802804
21.
Hsu
,
C. C.
,
Chiu
,
W. C.
,
Kuo
,
L. S.
, and
Chen
,
P. H.
,
2014
, “
Reversed Boiling Curve Phenomenon on Surfaces With Interlaced Wettability
,”
AIP Adv.
, 4, p.
107110
.10.1063/1.4897953
22.
Hsu
,
C. C.
,
Lee
,
M. R.
,
Wu
,
C. H.
, and
Chen
,
P. H.
,
2017
, “
Effect of Interlaced Wettability on Horizontal Copper Cylinders in Nucleate Pool Boiling
,”
Appl. Therm. Eng.
, 112, pp.
1187
1194
.10.1016/j.applthermaleng.2016.10.176
23.
Zhang
,
C.
,
Palko
,
J. W.
,
Rong
,
G.
,
Pringle
,
K. S.
,
Barako
,
M. T.
,
Dusseault
,
T. J.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2018
, “
Tailoring Permeability of Microporous Copper Structures Through Template Sintering
,”
ACS Appl. Mater. Interfaces
,
10
(
36
), pp.
30487
30494
.10.1021/acsami.8b03774
24.
Zhang
,
C.
,
Rong
,
G.
,
Palko
,
J. W.
,
Dusseault
,
T. J.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2015
, “
Tailoring of Permeability in Copper Inverse Opal for Electronic Cooling Applications
,”
ASME
Paper No. IPACK2015-48262.10.1115/IPACK2015-48262
25.
Zhang
,
C.
,
Palko
,
J. W.
,
Barako
,
M. T.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2018
, “
Enhanced Capillary-Fed Boiling in Copper Inverse Opals Via Template Sintering
,”
Adv. Funct. Mater.
,
28
(
41
), p.
1803689
.10.1002/adfm.201803689
26.
Webb
,
R. L.
,
1983
, “
Nucleate Boiling on Porous Coated Surfaces
,”
Heat Transfer Eng.
, 4(3–4), pp.
71
82
.10.1080/01457638108939610
27.
Cieiliński
,
J. T.
,
2002
, “
Nucleate Pool Boiling on Porous Metallic Coatings
,”
Exp. Therm. Fluid Sci.
, 25(7), pp.
557
564
.10.1016/S0894-1777(01)00105-4
28.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
, 36(10), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
29.
Pham
,
Q. N.
,
Barako
,
M. T.
,
Tice
,
J.
, and
Won
,
Y.
,
2017
, “
Microscale Liquid Transport in Polycrystalline Inverse Opals Across Grain Boundaries
,”
Sci. Rep.
,
7
(
1
), p. 10465.10.1038/s41598-017-10791-3
30.
Stein
,
A.
,
2003
, “
Advances in Microporous and Mesoporous Solids - Highlights of Recent Progress
,”
Adv. Mater.
,
15
(
10
), pp.
763
775
.10.1002/adma.200300007
31.
Wang
,
Y. Q.
,
Luo
,
J. L.
,
Heng
,
Y.
,
Mo
,
D. C.
, and
Lyu
,
S. S.
,
2018
, “
Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure
,”
Int. J. Heat Mass Transfer
,
119
, pp.
333
342
.10.1016/j.ijheatmasstransfer.2017.11.080
32.
Li
,
S.
,
Furberg
,
R.
,
Toprak
,
M. S.
,
Palm
,
B.
, and
Muhammed
,
M.
,
2008
, “
Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces
,”
Adv. Funct. Mater.
,
18
(
15
), pp.
2215
2220
.10.1002/adfm.200701405
33.
Mandrusiak
,
G. D.
, and
Carey
,
V. P.
,
1989
, “
Convective Boiling in Vertical Channels With Different Offset Strip Fin Geometries
,”
ASME J. Heat Transfer-Trans. ASME
, 111(1), pp.
156
165
.10.1115/1.3250638
34.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C. Y.
, and
Su
,
C. Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer
, 109, pp.
357
366
.10.1016/j.ijheatmasstransfer.2017.01.110
35.
Lee
,
H.
,
Maitra
,
T.
,
Palko
,
J.
,
Kong
,
D.
,
Zhang
,
C.
,
Barako
,
M. T.
,
Won
,
Y.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2018
, “
Enhanced Heat Transfer Using Microporous Copper Inverse Opals
,”
ASME J. Electron. Packag.
, 140(2), p.
020906
.10.1115/1.4040088
36.
Ha
,
M.
, and
Graham
,
S.
,
2017
, “
Pool Boiling Characteristics and Critical Heat Flux Mechanisms of Microporous Surfaces and Enhancement Through Structural Modification
,”
Appl. Phys. Lett.
,
111
(
9
), p.
091601
.10.1063/1.4999158
37.
Barako
,
M. T.
,
Sood
,
A.
,
Zhang
,
C.
,
Wang
,
J.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Zheng
,
X.
,
Braun
,
P. V.
, and
Goodson
,
K. E.
,
2016
, “
Quasi-Ballistic Electronic Thermal Conduction in Metal Inverse Opals
,”
Nano Lett.
,
16
(
4
), pp.
2754
2761
.10.1021/acs.nanolett.6b00468
38.
Yeo
,
S. J.
,
Choi
,
G. H.
, and
Yoo
,
P. J.
,
2017
, “
Multiscale-Architectured Functional Membranes Utilizing Inverse Opal Structures
,”
J. Mater. Chem. A
,
5
(
33
), pp.
17111
17134
.10.1039/C7TA05033J
39.
Hatton
,
B.
,
Mishchenko
,
L.
,
Davis
,
S.
,
Sandhage
,
K. H.
, and
Aizenberg
,
J.
,
2010
, “
Assembly of Large-Area, Highly Ordered, Crack-Free Inverse Opal Films
,”
Proc. Natl. Acad. Sci.
,
107
(
23
), pp.
10354
10359
.10.1073/pnas.1000954107
40.
Shin
,
H. C.
,
Dong
,
J.
, and
Liu
,
M.
,
2003
, “
Nanoporous Structures Prepared by an Electrochemical Deposition Process
,”
Adv. Mater.
,
15
(
19
), pp.
1610
1614
.10.1002/adma.200305160
41.
Shin
,
H. C.
, and
Liu
,
M.
,
2004
, “
Copper Foam Structures With Highly Porous Nanostructured Walls
,”
Chem. Mater.
,
16
(
25
), pp.
5460
5464
.10.1021/cm048887b
42.
Li
,
J.
,
Fu
,
W.
,
Zhang
,
B.
,
Zhu
,
G.
, and
Miljkovic
,
N.
,
2019
, “
Ultrascalable Three-Tier Hierarchical Nanoengineered Surfaces for Optimized Boiling
,”
ACS Nano
,
13
(
12
), pp.
14080
14093
.10.1021/acsnano.9b06501
43.
Rishi
,
A. M.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Improving Aging Performance of Electrodeposited Copper Coatings During Pool Boiling
,”
Appl. Therm. Eng.
, 140, pp.
406
414
.10.1016/j.applthermaleng.2018.05.061
44.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.10.1016/j.ijheatmasstransfer.2014.08.063
45.
Ayub
,
Z. H.
, and
Bergles
,
A. E.
,
1987
, “
Pool Boiling From GEWA Surfaces in Water and R-113
,”
Wärme Stoffübertragung
,
21
(
4
), pp.
209
219
.10.1007/BF01004023
46.
Chan
,
M. A.
,
Yap
,
C. R.
, and
Ng
,
K. C.
,
2010
, “
Pool Boiling Heat Transfer of Water on Finned Surfaces at Near Vacuum Pressures
,”
ASME J. Heat Transfer-Trans. ASME
, 132(3), p.
031501
.10.1115/1.4000054
47.
Zhong
,
D.
,
Meng
,
J.
,
Li
,
Z.
, and
Guo
,
Z.
,
2015
, “
Critical Heat Flux for Downward-Facing Saturated Pool Boiling on Pin Fin Surfaces
,”
Int. J. Heat Mass Transfer
,
87
, pp.
201
211
.10.1016/j.ijheatmasstransfer.2015.04.001
48.
Seo
,
H.
,
Lim
,
Y.
,
Shin
,
H.
, and
Bang
,
I. C.
,
2018
, “
Effects of Hole Patterns on Surface Temperature Distributions in Pool Boiling
,”
Int. J. Heat Mass Transfer
, 120, pp.
587
596
.10.1016/j.ijheatmasstransfer.2017.12.066
49.
Yu
,
C. K.
,
Lu
,
D. C.
, and
Cheng
,
T. C.
,
2006
, “
Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72
,”
J. Micromech. Microeng.
, 16(10), pp.
2092
2099
.10.1088/0960-1317/16/10/024
50.
Lee
,
J.
,
Suh
,
Y.
,
Dubey
,
P. P.
,
Barako
,
M. T.
, and
Won
,
Y.
,
2019
, “
Capillary Wicking in Hierarchically Textured Copper Nanowire Arrays
,”
ACS Appl. Mater. Interfaces
,
11
(
1
), pp.
1546
1554
.10.1021/acsami.8b14955
51.
Lee
,
J.
,
Shao
,
B.
, and
Won
,
Y.
,
2019
, “
Droplet Jumping on Superhydrophobic Copper Oxide Nanostructured Surfaces
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
, 9(6), pp.
1075
1081
.10.1109/TCPMT.2018.2889091
52.
Pham
,
Q. N.
,
Suh
,
Y.
,
Shao
,
B.
, and
Won
,
Y.
,
2019
, “
Boiling Heat Transfer Using Spatially-Variant and Uniform Microporous Coatings
,”
ASME
Paper No. IPACK2019-6307.10.1115/IPACK2019-6307
53.
Lin
,
C. H.
, and
Won
,
Y.
,
2020
, “
Pressure-Dependent Thermal Characterization of Biporous Copper Structures
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
, 10(4), pp.
568
576
.10.1109/TCPMT.2019.2956722
54.
Lin
,
C. H.
,
Izard
,
A. G.
,
Valdevit
,
L.
, and
Won
,
Y.
,
2021
, “
Mechanically Compliant Thermal Interfaces Using Biporous Copper-Polydimethylsiloxane Interpenetrating Phase Composite
,”
Adv. Mater. Interfaces
,
8
(
1
), p.
2001423
.10.1002/admi.202001423
55.
Mahamudur Rahman
,
M.
,
Pollack
,
J.
, and
Mccarthy
,
M.
,
2015
, “
Increasing Boiling Heat Transfer Using Low Conductivity Materials
,”
Sci. Rep.
, 5, p.
13145
.10.1038/srep13145
56.
Hilpert
,
M.
, and
Ben-David
,
A.
,
2009
, “
Infiltration of Liquid Droplets Into Porous Media: Effects of Dynamic Contact Angle and Contact Angle Hysteresis
,”
Int. J. Multiphase Flow
, 35(3), pp.
205
218
.10.1016/j.ijmultiphaseflow.2008.11.007
57.
Pham
,
Q. N.
,
Shao
,
B.
,
Kim
,
Y.
, and
Won
,
Y.
,
2018
, “
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control
,”
ACS Appl. Mater. Interfaces
,
10
(
18
), pp.
16015
16023
.10.1021/acsami.8b02665
58.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.10.1103/PhysRev.17.273
59.
Lucas
,
R.
,
1918
, “
Ueber Das Zeitgesetz Des Kapillaren Aufstiegs Von Flüssigkeiten
,”
Kolloid-Z.
,
23
(
1
), pp.
15
22
.10.1007/BF01461107
60.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Physics and Mathematics, Los Angeles, CA, AEC Report No. AECU-4439.
61.
Incropera
,
F. P.
,
2013
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
, Hoboken, NJ.
62.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
, “
Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
(
7
), p.
071908
.10.1063/1.3555430
63.
Chu
,
K. H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
, 100(24), p.
241603
.10.1063/1.4724190
64.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
, 47(23), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
65.
Righetti
,
G.
,
Doretti
,
L.
,
Sadafi
,
H.
,
Hooman
,
K.
, and
Mancin
,
S.
,
2020
, “
Water Pool Boiling Across Low Pore Density Aluminum Foams
,”
Heat Transfer Eng.
, 41(19–20), pp.
1673
1682
.10.1080/01457632.2019.1640464
66.
Brumfield
,
L. A.
, and
Park
,
S.
,
2012
, “
The Effects of Asymmetric Micro Ratchets on Dynamic Contact Angle and Pool Boiling Performance
,”
ASME
Paper No. IMECE2012-87176.10.1115/IMECE2012-87176
67.
Pham
,
Q. N.
,
Zhang
,
S.
,
Hao
,
S.
,
Montazeri
,
K.
,
Lin
,
C. H.
,
Lee
,
J.
,
Mohraz
,
A.
, and
Won
,
Y.
,
2020
, “
Boiling Heat Transfer With a Well-Ordered Microporous Architecture
,”
ACS Appl. Mater. Interfaces
,
12
(
16
), pp.
19174
19183
.10.1021/acsami.0c01113
You do not currently have access to this content.