Abstract

High porosity, high pore-density (pores per inch: PPI) metal foams are a popular choice in high heat flux cooling applications as they offer large heat transfer area over a given volume, however, accompanied by a concomitant increase in pumping power requirements. This experimental study aims toward developing a novel metal-foam based cooling configuration featuring thin copper foams (3 mm) subjected to orthogonal air jet array impingement. The foam configurations allowed strategic and selective placement of high pore-density (90 PPI) and high porosity (∼96%) copper foam on the heated surface with respect to the jet array in the form of foam stripes aiming to enhance heat transfer and reduce pressure drop penalty. The thermal-hydraulic performance was evaluated over range of Reynolds numbers, jet-to-jet (x/dj,y/dj) and jet-to-target (z/dj) spacings and compared with a baseline smooth surface. The effect of pore density was further analyzed by studying 40 PPI copper foam and compared with corresponding 90 PPI foam arrangement. The thermal-hydraulic performance was found to be governed by combinational interaction of three major factors: heat transfer area, ease of jet penetration, and foam volume usage. Strategic placement of metal foam stripes allowed better utilization of the foam heat transfer area and available foam volume by aiding penetration of coolant fluid through available foam thickness, thus performing better than the case where entire heat transfer area was covered with foam. For a fixed pumping power of 10 W, the optimal metal foam-jet configuration showed ∼50% higher heat transfer with negligible increase in pumping power requirements.

References

1.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
pp.
1
60
.10.1016/S0065-2717(08)70221-1
3.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Heat Transfer Gas Turbine Syst.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
4.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
5.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
,
2001
, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
165
172
.10.1115/1.1371923
6.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.10.1115/1.3248197
7.
Hansen
,
L. G.
, and
Webb
,
B. W.
,
1993
, “
Air Jet Impingement Heat Transfer From Modified Surfaces
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
989
997
.10.1016/S0017-9310(05)80283-2
8.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
9.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.10.1016/0017-9310(88)90013-0
10.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
11.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Efective Termal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
12.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
13.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
14.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 Ppi Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.10.1016/j.applthermaleng.2011.05.015
15.
Panse
,
S. S.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Thermal Hydraulic Performance Augmentation by High-Porosity Thin Aluminum Foams Placed in High Aspect Ratio Ducts
,”
Appl. Therm. Eng.
,
161
, p.
114162
.10.1016/j.applthermaleng.2019.114162
16.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
17.
Kuo
,
S. M.
, and
Tien
,
C. L.
,
1988
, “
Heat Transfer Augmentation in a Foam-Material Filled Duct With Discrete Heat Sources
,”
InterSociety Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components (I-THERM ‘88)
,
Los Angeles, CA
, May 11–13, pp.
87
91
.10.1109/ITHERM.1988.28684
18.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2011
, “
Heat Transfer Performance of Aluminum Foams
,”
ASME J. Heat Transfer
,
133
(
6
), p.
060904
.10.1115/1.4003451
19.
Kurtbas
,
I.
, and
Celik
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1313
1325
.10.1016/j.ijheatmasstransfer.2008.07.050
20.
Jeng
,
T.-M.
, and
Tzeng
,
S.-C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
21.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study If Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
22.
Singh
,
P.
,
Zhang
,
M.
,
Pandit
,
J.
, and
Mahajan
,
R. L.
,
2019
,
Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing
,
ASME International Mechanical Engineering Congress and Exposition
, Pittsburgh, PA, Nov., V08BT10A020.
23.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High Porosity Aluminum Foams
,”
ASME J. Heat Transfer
, 142(5), p. 052301.10.1115/1.4045640
24.
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by Packing High-Porosity Thin Metal Foams Between Jet Exit Plane and Target Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p. 061016.10.1115/1.4043470
25.
Madhavan
,
S.
,
Sambamurthy
,
V. S.
,
Singh
,
P.
, and
Ekkad
,
S.
, “
Effect of Pore Density on Jet Impingement Onto Thin Metal Foams Under Intermediate Crossflow Scheme
,”
ASME Paper No. IMECE2019-10748
.10.1115/IMECE2019-10748
26.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer,
128
(
6
), pp.
530
537
.10.1115/1.2188461
27.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.10.1115/1.2759972
28.
Panse
,
S.
,
Singh
,
S. P.
, and
Ekkad
,
S. V.
,
2018
, “
High Porosity and High Pore Density Thin Copper Foams for Compact Electronics Cooling
,”
ASME Paper No. IMECE2018-86355
.10.1115/IMECE2018-86355
29.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis,
University of Colorado
,
Boulder, CO
.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
pp.
80
95
.10.1016/j.ijheatmasstransfer.2018.11.135
32.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
You do not currently have access to this content.