Abstract

Electronic packaging for automotive applications are at particular risk of thermomechanical failure due to the naturally harsh conditions it is exposed to. With the rise of electric and hybrid electric vehicles (EVs and HEVs), combined with a desire to miniaturize, the challenge of removing enough heat from electronic devices in automotive vehicles is evolving. This paper closely examines the new challenges in thermal management in various driving environments and aims to classify each existing cooling method in terms of performance. Particular focus is placed upon emerging solutions regarded to hold great potential, such as phase-change materials (PCMs). PCMs have been regarded for some time as a means of transferring heat quickly away from the region with the electronic components and are widely regarded as a possible means of carrying out cooling in large scale from small areas, because of their high latent heat of fusion, high specific heat, temperature stability, and small volume change during phase change, etc. They have already been utilized as a method of passive cooling in electronics in various ways, but their adoption in automotive power electronics, such as in traction inverters, has yet to be fulfilled. A brief discussion is made on some of the potential areas of application and challenges relating to more widespread adoption of PCMs, with reference to a case study using computational model of a commercially available power module used in automotive applications.

References

2.
Katoh
,
T.
,
Xu
,
G.
,
Vogel
,
M.
, and
Novotny
,
S.
,
2004
, “
New Attempt of Forced-Air Cooling for High Heat-Flux Applications
,” The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (
IEEE Cat. No. 04CH37543
), Vol. 2, Las Vegas, NV, June 1–4, pp.
34
39
.10.1109/ITHERM.2004.1318249
3.
Zimbeck
,
W. G.
,
Slavik
,
J.
,
Cennamo
,
S.
,
Kang
,
J.
,
Yun
,
E.
, and
Kroliczek
,
2008
, “
Loop Heat Pipe Technology for Cooling Computer Servers
,”
IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
19
25
.10.1109/ITHERM.2008.4544248
4.
Ali
,
A. F.
, and
El-Genk
,
M. S.
,
2012
, “
Effect of Inclination on Saturation Boiling of PF-5060 Dielectric Liquid on 80-and 137-μm Thick Copper Micro-Porous Surfaces
,”
Int. J. Thermal Sci.
,
53
, pp.
42
48
.10.1016/j.ijthermalsci.2011.11.004
5.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
6.
Martínez-Galván
,
E.
,
Antón
,
R.
,
Ramos
,
J. C.
, and
Khodabandeh
,
R.
,
2013
, “
Influence of Surface Roughness on a Spray Cooling System With R134a—Part I: Heat Transfer Measurements
,”
Exp. Thermal Fluid Sci.
,
46
, pp.
183
190
.10.1016/j.expthermflusci.2012.12.010
7.
Martínez-Galván
,
E.
,
Ramos
,
J. C.
,
Antón
,
R.
, and
Khodabandeh
,
R.
,
2013
, “
Influence of Surface Roughness on a Spray Cooling System With R134a—Part II: Film Thickness Measurements
,”
Exp. Thermal Fluid Sci.
,
48
, pp.
73
80
.10.1016/j.expthermflusci.2013.02.010
8.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Microjet Array Single-Phase and Flow Boiling Heat Transfer With R134a
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5027
5034
.10.1016/j.ijheatmasstransfer.2010.07.062
9.
Akgün
,
M.
,
Aydın
,
O.
, and
Kaygusuz
,
K.
,
2007
, “
Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM
,”
Energy Convers. Manage.
,
48
(
2
), pp.
669
678
.10.1016/j.enconman.2006.05.014
10.
Beemkumar
,
N.
,
Karthikeyan
,
A.
,
Saravanakumar
,
B.
, and
Jayaprabakar
,
J.
,
2018
, “
Performance Improvement of D-Sorbitol PCM-Based Energy Storage System With Different Fins
,”
Int. J. Ambient Energy
, 39(4), pp.
372
376
.10.1080/01430750.2017.1303642
11.
Alkan
,
C.
,
Sarı
,
A.
, and
Karaipekli
,
A.
,
2011
, “
Preparation, Thermal Properties and Thermal Reliability of Microencapsulated n-Eicosane as Novel Phase Change Material for Thermal Energy Storage
,”
Energy Convers. Manage.
,
52
(
1
), pp.
687
692
.10.1016/j.enconman.2010.07.047
12.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2011
, “
Experimental Study on the Melting and Solidification Behaviour of a Medium Temperature Phase Change Storage Material (Erythritol) System Augmented With Fins to Power a LiBr/H2O Absorption Cooling System
,”
Renewable Energy
,
36
(
1
), pp.
108
117
.10.1016/j.renene.2010.06.005
13.
Liu
,
X.
,
Marbut
,
C.
,
Huitink
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2019
, “
Influence of Crystalline Polymorphism on the Phase Change Properties of Sorbitol-Au Nanocomposites
,”
Mater. Today Energy
,
12
, pp.
379
388
.10.1016/j.mtener.2019.03.007
14.
Iradukunda
,
A.-C.
,
Kasitz
,
J.
,
Carlton
,
H.
,
Huitink
,
D.
,
Deshpande
,
A.
, and
Luo
,
F.
,
2020
, “
Amol Deshpande, and Fang Luo. “Concurrent Thermal and Electrical Property Effects of Nano-Enhanced Phase Change Material for High-Voltage Electronics Applications
,”
ASME J. Electron. Packag.
,
142
(
3
), p.
031109
.10.1115/1.4046935
15.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052406
.10.1115/1.4036017
16.
Gonzalez-Nino
,
D.
,
Boteler
,
L. M.
,
Ibitayo
,
D.
,
Jankowski
,
N. R.
,
Urciuoli
,
D.
,
Kierzewski
,
I. M.
, and
Quintero
,
P. O.
,
2018
, “
Experimental Evaluation of Metallic Phase Change Materials for Thermal Transient Mitigation
,”
Int. J. Heat Mass Transfer
,
116
, pp.
512
519
.10.1016/j.ijheatmasstransfer.2017.09.039
17.
Báez
,
R.
,
González
,
L. E.
,
de Jesús-López
,
M. X.
,
Quintero
,
P. O.
, and
Boteler
,
L. M.
,
2020
, “
Metallic Phase Change Material's Microstructural Stability Under Repetitive Melting/Solidification Cycles
,”
ASME J. Electron. Packag.
,
142
(
3
), p. 031110.10.1115/IPACK2019-6385
18.
Arshad
,
A.
,
Muhammad Ali
,
H.
,
Khushnood
,
S.
, and
Jabbal
,
M.
,
2018
, “
Experimental Investigation of PCM Based Round Pin-Fin Heat Sinks for Thermal Management of Electronics: Effect of Pin-Fin Diameter
,”
Int. J. Heat Mass Transfer
,
117
, pp.
861
872
.10.1016/j.ijheatmasstransfer.2017.10.008
19.
Ashraf
,
M. J.
,
Ali
,
H. M.
,
Usman
,
H.
, and
Arshad
,
A.
,
2017
, “
Experimental Passive Electronics Cooling: Parametric Investigation of Pin-Fin Geometries and Efficient Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
115
, pp.
251
263
.10.1016/j.ijheatmasstransfer.2017.07.114
20.
Tan
,
F. L.
, and
Tso
,
C. P.
,
2004
, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Thermal Eng.
,
24
(
2–3
), pp.
159
169
.10.1016/j.applthermaleng.2003.09.005
21.
Rehman
,
T.-U.
, and
Ali
,
H. M.
,
2018
, “
Experimental Investigation on Paraffin Wax Integrated With Copper Foam Based Heat Sinks for Electronic Components Thermal Cooling
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
155
162
.10.1016/j.icheatmasstransfer.2018.08.003
22.
Nafis
,
B. M.
, and
Iradukunda
,
A.
,
2018
, “
Drive Schedule Impacts to Thermal Design Requirements and the Associated Reliability Implications in Electric Vehicle Traction Drive Inverters
,”
ASME
Paper No. IPACK2018-8280.10.1115/IPACK2018-8280
23.
Boteler
,
L.
,
Fish
,
M.
,
Berman
,
M.
, and
Wang
,
J.
,
2019
, “
Understanding Trade-Offs of Phase Change Materials for Transient Thermal Mitigation
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
870
877
.10.1109/ITHERM.2019.8757253
24.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2017
, “
Power Packaging Thermal and Stress Model for Quick Parametric Analyses
,”
ASME
Paper No. IPACK2017-74130.10.1115/IPACK2017-74130
25.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2018
, “
Comparison of Thermal and Stress Analysis Results for a High Voltage Module Using FEA and a Quick Parametric Analysis Tool
,”
ASME
Paper No. IPACK2018-8394.10.1115/IPACK2018-8394
26.
Kandasamy
,
R.
,
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.10.1016/j.applthermaleng.2007.06.010
27.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M.-H.
,
1997
, “
Fast Power Cycling Test of IGBT Modules in Traction Application
,”
IEEE Proceedings of Second International Conference on Power Electronics and Drive Systems
, Vol. 1, Singapore, May 26–29, pp.
425
430
.10.1109/PEDS.1997.618742
You do not currently have access to this content.