Abstract

This work will specifically detail the development of a processing and fabrication route for a three-dimensional asynchronous field-programmable gate array (3D-AFPGA) design based on an extension of pre-existing two-dimensional-field-programmable gate array (2D-FPGA) tile designs. The periodic nature of FPGAs permits the use of an alternative approach, whereby the design entails splitting the FPGA design along tile borders and inserting through silicon vias (TSVs) at regular spatial intervals. This serves to enable true 3D performance (i.e., full 3D signal routing) while leaving most of the 2D circuit layouts intact. 3D signal buffers are inserted to handle communication between vertical and adjacent neighbors. For this approach, the density of vertical interconnections was shown to be determined by the size of the bond pads used for tier–tier communications and bonding. As a consequence, reducing bond pad dimensions from 25 μm to 15 μm, or 10 μm, bond pads are preferred to increase the connectivity between layers. A 3D-AFPGA mockup test structure was then proposed for completing development and exercising the 3D integration process flows. This mockup test structure consists of a three-tier demonstration vehicle consisting of a chip-to-wafer and a subsequent chip-to-chip bond. Besides, an alternate copper bonding approach using pillars was explored. Although the intended application is for the 3D integration process compatible with the 3D AFPGA design, the test structure was also designed to be generally applicable to various applications for 3D integration. Because of the importance of thermal management of 3D-AFPGA, it is important to predict the temperature distribution and avoid the maximum junction temperature. The numerical thermal modeling for predicting the equivalent thermal conductivity in every layer and the 3D temperature distribution in the 3D-AFPGA are developed and discussed as well.

References

1.
Moore
,
G. E.
,
2006
, “
Cramming More Components Onto Integrated Circuits, Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, pp. 114 ff
,”
IEEE Solid-State Circuits Soc. Newsl.
,
11
(
3
), p.
33
.10.1109/N-SSC.2006.4785860
2.
Dennard
,
R. H.
,
Gaensslen
,
F. H.
,
Yu
,
H.-N.
,
Rideout
,
V. L.
,
Bassous
,
E.
, and
LeBlanc
,
A. R.
,
1974
, “
Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions
,”
IEEE J. Solid-State Circuits
,
9
(
5
), pp.
256
268
.10.1109/JSSC.1974.1050511
3.
Nowak
,
E. J.
,
2002
, “
Maintaining the Benefits of CMOS Scaling When Scaling Bogs Down
,”
IBM J. Res. Develop.
,
46
(
2.3
), pp.
169
180
.10.1147/rd.462.0169
4.
Doering
,
R.
, and
Nishi
,
Y.
,
2008
,
Handbook of Semiconductor Manufacturing Technology
,
CRC Press
,
Boca Raton, FL
.
5.
Levinson
,
H.
,
2005
,
Principles of Lithography
,
SPIE Press
,
Bellingham, WA
.
6.
Wong
,
A.
,
2001
,
Resolution Enhancement Techniques in Optical Lithography
,
SPIE
,
Bellingham, Washington, DC
.
7.
Sun
,
Y.
,
Thompson
,
S.
, and
Nishida
,
T.
,
2007
, “
Physics of Strain Effects in Semiconductors and Metal-Oxide-Semiconductor-Field-Effect Transistors
,”
J. Appl. Phys.
,
101
(
10
), p.
104503
.10.1063/1.2730561
8.
Houssa
,
M.
,
2004
,
High-k Gate Dielectrics
,
Institute of Physics
,
Bristol, UK
.
9.
Mistry
,
K.
,
2007
, “
A 45 nm Logic Technology With High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193 nm Dry Patterning, and 100% Pb-Free Packaging
,”
IEEE International Electron Devices Meeting
, Washington, DC, Dec. 10–12, pp.
247
250
.10.1109/IEDM.2007.4418914
10.
Bohr
,
M. T.
,
Chau
,
R. S.
,
Ghani
,
T.
, and
Mistry
,
K.
,
2007
, “
The High-k Solution
,”
IEEE Spectrum
,
44
(
10
), pp.
29
35
.10.1109/MSPEC.2007.4337663
11.
Celler
,
G.
, and
Cristoloveanu
,
S.
,
2003
, “
Frontiers of Silicon-on-Insulator
,”
J. Appl. Phys.
,
93
(
9
), pp.
4955
4978
.10.1063/1.1558223
12.
Kuhn
,
K. J.
,
2011
, “
CMOS Scaling for the 22 nm Node and Beyond: Device Physics and Technology
,”
Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications
, Hsinchu, Taiwan, Apr. 25–27.10.1109/VTSA.2011.5872206
13.
Sylvester
,
D.
, and
Wu
,
C.
,
2001
, “
Analytical Modeling and Characterization of Deep Sub-Micrometer Interconnect
,”
Proc. IEEE
,
89
(
5
), pp.
634
664
.10.1109/5.929648
14.
Gupta
,
T.
,
2009
,
Copper Interconnect Technology
,
Springer Science Business Media
,
New York
.
15.
Hubner
,
R.
,
2009
,
Advanced Ta-Based Diffusion Barriers for Cu Interconnects
,
Nova Science Publishers
,
New York
.
16.
Bohr
,
M. T.
,
1995
, “
Interconnect Scaling-the Real Limiter to High-Performance ULSI
,”
Proceedings of International Electron Devices Meeting
, Washington, DC, Dec. 10–13, pp.
241
244
.http://ctho.org/toread/forclass/18-722/wires/Bohr95.pdf
17.
Kapur
,
P.
,
Chandra
,
G.
,
McVittie
,
J. P.
, and
Saraswat
,
K. C.
,
2002
, “
Technology and Reliability Constrained Future Copper Interconnects—II: Performance Implications
,”
IEEE Trans. Electron Devices
,
49
(
4
), pp.
598
604
.10.1109/16.992868
18.
Steinlesberger
,
G.
,
Engelhardt
,
M.
,
Schindler
,
G.
,
Steinhögl
,
W.
,
Glasow
,
A. V.
,
Mosig
,
K.
, and
Bertagnolli
,
E.
,
2002
, “
Electrical Assessment of Copper Damascene Interconnects Down to Sub-50 nm Feature Sizes
,”
Microelectron. Eng.
,
64
(
1–4
), pp.
409
416
.10.1016/S0167-9317(02)00815-8
19.
Garrou
,
P.
,
Bower
,
C.
, and
Ramm
,
P.
,
2008
, “
Introduction to 3D Integration
,”
Handbook of 3D Integration
,
Wiley-VCH-Verl
,
Weinheim, Germany
.
20.
Lu
,
J. Q.
,
Rose
,
K.
, and
Vitkavage
,
S.
,
2007
, “
3D Integration: Why, What, Who, When?
,”
Future Fab Int.
, (23), pp.
25
27
.https://www.researchgate.net/publication/275353195_3D_Integration_Why_What_Who_When
21.
Wolf
,
M. J.
,
Ramm
,
P.
,
Klumpp
,
A.
, and
Reichl
,
H.
,
2008
, “
Technologies for 3D Wafer Level Heterogeneous Integration
,”
Symposium on Design, Test, Integration, and Packaging of MEMS/MOEMS
,
Nice
, France, Apr. 9–11, pp.
123
126
.10.1109/DTIP.2008.4752966
22.
Garrou
,
P.
,
P.
, and
Bower
,
C.
,
2008
, “
Overview of 3D Integration Process Technology
,”
Handbook of 3D Integration
,
Wiley-VCH-Verl
,
Weinheim, Germany
.10.1002/9783527623051.ch3
23.
Farooq
,
U.
,
Marrakchi
,
Z.
, and
Mehrez
,
H.
,
2012
, “
FPGA Architectures: An Overview
,”
Three-Based Heterogeneous FPGA Architectures
,
Springer
,
New York
.10.1007/978-1-4614-3594-5_2
24.
Fang
,
D.
,
LaFrieda
,
C.
,
Peng
,
S.
, and
Manohar
,
R.
,
2006
, “
A 3-Tier Asynchronous FPGA
,”
Proceedings of the 23rd International VLSI/ULSI Multilevel Interconnection Conference
(
VMIC
), Fremont, CA, Sept. 26–28.https://www.researchgate.net/publication/239915183_A_three-tier_asynchronous_FPGA
25.
Ian
,
K.
,
Tessier
,
R.
, and
Rose
,
J.
,
2007
, “
FPGA Architecture: Survey and Challenges
,”
Found. Trends Elect. Des. Autom.
,
2.2
(
2
), pp.
135
253
.10.1561/1000000005
26.
Naito
,
T.
,
2010
, “
World's First Monolithic 3D-FPGA With TFT SRAM Over 90 nm 9 Layer Cu CMOS
,”
Symposium on VLSI Technology
, Honolulu, Hawaii, June 15–17, pp.
219
220
.10.1109/VLSIT.2010.5556234
27.
Uppal
,
A.
,
Peterson
,
J.
,
Chang
,
J. Y.
,
Guo
,
X.
,
Liang
,
F.
, and
Tang
,
W.
,
2019
, “
Thermomechanical Interaction Between Thin Bare-Die Package and Thermal Solution in Next-Generation Mobile Computing Platforms
,”
ASME J. Electron. Packag.
,
141
(
1
), p.
010803
.10.1115/1.4042801
28.
Lau
,
J. H.
,
2019
, “
Recent Advances and Trends in Fan-Out Wafer/Panel-Level Packaging
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040801
.10.1115/1.4043341
29.
Haji-Sheikh
,
A.
,
Beck
,
J. V.
, and
Agonafer
,
D.
,
2003
, “
Steady-State Heat Conduction in Multi-Layer Bodies
,”
Inter. J. Heat Mass Transfer
,
46
(
13
), pp.
2363
2379
.10.1016/S0017-9310(02)00542-2
30.
Choobineh
,
L.
, and
Jain
,
A.
,
2012
, “
Analytical Solution for Steady-State and Transient Temperature Field in Vertically Integrated Three-Dimensional Integrated Circuits (3D ICs)
,”
IEEE Trans. Compon. Packag. Manufac. Technol.
,
2
(
12
), pp.
2031
2039
.10.1109/TCPMT.2012.2213820
31.
Choobineh
,
L.
, and
Jain
,
A.
,
2013
, “
Determination of Temperature Distribution in Three-Dimensional Integrated Circuits (3D ICs) With Unequally-Sized Die
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
176
184
.10.1016/j.applthermaleng.2013.03.006
32.
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
An Explicit Analytical Model for Rapid Computation of Temperature Field in a Three-Dimensional Integrated Circuit (3D IC)
,”
Int. J. Therm. Sci.
,
87
, pp.
103
109
.10.1016/j.ijthermalsci.2014.08.012
33.
Chien
,
H. C.
,
Lau
,
J. H.
,
Chao
,
Y. L.
,
Dai
,
R. M.
,
Lo
,
W. C.
, and
Kao
,
M. J.
, “
Estimation for Equivalent Thermal Conductivity of Silicon-Through Vias TSVs Used for 3D IC Integration TSV
,” 6th International Microsystems, Packaging, Assembly, and Circuits Technology Conference (
IMPACT
), Taipei, Taiwan, Oct. 19–21, pp.
153
156
.10.1109/IMPACT.2011.6117240
34.
Chien
,
H. C.
,
Lau
,
J. H.
,
Chao
,
Y. L.
,
Dai
,
M. J.
, and
Tain
,
R. M.
,
2012
, “
Thermal Evaluation and Analysis of 3D IC Integrated SiP With TSVs for Network System Application
,”
2012 IEEE 62nd Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1, pp. 1866–1873.10.1109/ECTC.2012.6249092
35.
Manem
,
H.
,
Xu
,
M.
,
Carroll
,
R.
, and
Geer
,
R.
,
2016
, “
Design Considerations for Three-Dimensional Integrated Circuits for Aerospace Applications
,”
IEEE Aerospace Conference
, Big Sky, MT, Mar. 5–12, pp.
1
8
.10.1109/AERO.2016.7500735
36.
Tan
,
C.
,
Chen
,
K.
, and
Koester
,
S.
,
3D Integration for VLSI Systems. Boca Raton
,
CRC Press
,
FL
.
37.
Garrou
,
P.
,
Bower
,
C.
, and
Ramm
,
P.
,
2008
,
Handbook of 3D Integration
,
Wiley-VCH Verlag
,
Weinheim, Germany
, pp.
25
44
.
38.
Matthias
,
T.
,
Pargfrieder
,
S.
,
Wimplinger
,
M.
, and
Lindner
,
P.
, “
Chip-to-Wafer and Wafer-to-Wafer Integration Schemes
,”
Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits
, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp.
223
248
.https://www.researchgate.net/publication/290767820_Chip-to-Wafer_and_Wafer-to-Wafer_Integration_Schemes
39.
Agarwal
,
A.
,
Murthy
,
R. B.
,
Lee
,
V.
, and
Viswanadam
,
G.
,
2009
, “
Polysilicon Interconnections (FEOL): Fabrication and Characterization
,”
11th Electronics Packaging Technology Conference
, Singapore, Dec. 9–11, pp.
317
320
.10.1109/EPTC.2009.5416531
40.
Puech
,
M.
,
Thevenoud
,
J. M.
,
Gruffat
,
J. M.
,
Launay
,
N.
,
Arnal
,
N.
, and
Godinat
,
P.
,
2008
, “
Fabrication of 3D Packaging TSV Using DRIE
,”
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
,
Nice
, France, Apr. 9–11, pp.
109
114
.10.1109/DTIP.2008.4752963
41.
Jing
,
X.
,
Dai
,
F.
,
Zhang
,
W.
, and
Cao
,
L.
,
2016
, “
Via Last TSV Process for Wafer Level Packaging
,”
17th International Conference on Electronic Packaging Technology
(
ICEPT
), Wuhan, China, Aug. 16–19, pp.
1216
1218
.10.1109/ICEPT.2016.7583342
42.
Watanabe
,
N.
,
Kikuchi
,
H.
,
Yanagisawa
,
A.
,
Shimamoto
,
H.
,
Kikuchi
,
K.
,
Aoyagi
,
M.
, and
Nakamura
,
A.
,
2017
, “
Development of a High-Yield Via-Last Through Silicon Via Process Using Notchless Silicon Etching and Wet Cleaning of the First Metal Layer
,”
Jpn J. Appl. Phys.
,
56
(
7S2
), p.
07KE02
.10.7567/JJAP.56.07KE02
43.
Kumar
,
N.
,
2012
, “
Robust TSV Via-Middle and Via-Reveal Process Integration Accomplished Through Characterization and Management of Sources of Variation
,”
IEEE 62nd Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1, pp.
787
793
.10.1109/ECTC.2012.6248922
44.
Farooq
,
M. G.
,
2011
, “
3D Copper TSV Integration, Testing and Reliability
,”
International Electron Devices Meeting
, Washington, DC, Dec. 5–7, pp.
7.1.1
7.1.4
.10.1109/IEDM.2011.6131504
45.
Koh
,
W.
,
Lin
,
B.
, and
Tai
,
J.
,
2011
, “
Copper Pillar Bump Technology Progress Overview
,”
12th International Conference on Electronic Packaging Technology and High Density Packaging
, Shanghai, China, pp.
1
5
.
46.
Jajja
,
S. A.
,
Ali
,
W.
,
Ali
,
H. M.
, and
Ali
,
A. M.
,
2014
, “
Water Cooled Minichannel Heat Sinks for Microprocessor Cooling: Effect of Fin Spacing
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
76
82
.10.1016/j.applthermaleng.2013.12.007
You do not currently have access to this content.