Fluid flow and heat transfer characteristics on and around a central pedestal and a secondary pedestal, mounted on a flat surface with an impinging jet, are investigated. Surface Nusselt numbers, pressure coefficients (in the form of normalized wall static pressure relative to freestream static pressure), and flow visualization results are given for jet Reynolds numbers of 23,000 and 2300. The dimensionless nozzle-to-surface distance Ld is 2, and the nondimensional height of the central pedestal HD is 0.5. Results are given for different secondary pedestal heights and locations. Spatially averaged Nusselt numbers measured with secondary pedestals employed are 13% to 33% higher than values measured with no secondary pedestal. Local Nusselt numbers and wall pressure coefficients, measured with the secondary pedestal present, are different from values measured with no secondary pedestal, because of flow reattachment and the two counter-rotating recirculation zones located between the two pedestals, and small local regions of flow separation and recirculation located on top of the secondary pedestal. As such, the present multiple pedestal data with impinging jets are useful for a variety of electronics cooling arrangements.

1.
Weiss
,
J.
,
Fortner
,
P.
,
Pearson
,
B.
,
Watson
,
K.
, and
Monroe
,
T.
, 1989, “
Modeling Air Flow in Electronic Packages
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
111
(
9
), pp.
56
58
.
2.
Fedorov
,
A. G.
, and
Viskanta
,
A.
, 1997, “
A Numerical Simulation of Conjugate Heat Transfer in an Electronic Package Formed by Embedded Discrete Heat Sources in Contact With Porous Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
119
, pp.
8
16
.
3.
Copeland
,
D.
, 1996, “
Single-Phase and Boiling Cooling of Small Pin Fin Arrays of Multiple Nozzle Jet Impingement
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
21
26
.
4.
Sparrow
,
E. M.
, and
Larson
,
E. D.
, 1982, “
Heat Transfer From Pin-Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
5
), pp.
603
614
.
5.
Wadsworth
,
D. C.
, 1989, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,” MS thesis, Purdue University, West Lafayette, IN.
6.
Sullivan
,
P. F.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1992, “
Extended Surfaces to Enhanced Impingement Cooling With Single Circular Liquid Jets
,”
Proceedings of the ASME/JSME Joint Conference on Electronic Packaging
, San Jose, CA, ASME Paper No. EEP-1-1, pp.
207
216
.
7.
Sullivan
,
P. F.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1992, “
Use of Smooth and Roughened Spreader Plates to Enhance Impingement Cooling With Single Circular Liquid Jets
,” National Heat Transfer Conference, San Diego, CA, ASME Paper No. HTD-206-2, pp.
103
110
.
8.
Teuscher
,
K. L.
, 1992, “
Packaging Methods for Jet Impingement Cooling of an Array of Discrete Heat Sources
,” MS thesis, Purdue University, West Lafayette, IN.
9.
Baughn
,
J. W.
,
Mesbah
,
M.
, and
Yan
,
X.
, 1993, “
Measurements of Local Heat Transfer for an Impinging Jet on a Cylindrical Pedestal
,” Turbulent Enhanced Heat Transfer,
Proccedings of the 29th National Heat Transfer Conference
, Atlanta, GA, Aug. 8–11, Paper No. HTD-239, pp.
57
62
.
10.
Parneix
,
S.
,
Behnia
,
M.
, and
Durbin
,
P. A.
, 1999, “
Predictions of Turbulent Heat Transfer in an Axisymmetric Jet Impinging on a Heated Pedestal
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
43
49
.
11.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
, 2000, “
Heat Transfer From Pin-Fin Heat Sinks Under Multiple Impinging Jets
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
(
1
), pp.
113
120
.
12.
Issa
,
J. S.
, and
Ortega
,
A.
, 2006, “
Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
61
70
.
13.
Bartilson
,
B. W.
, 1991, “
Air Jet Impingement on a Miniature Pin-Fin Heat Sink
,” American Society of Mechanical Engineers, Paper No. 91-WA-EEP-41, pp.
1
8
.
14.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
, 1999, “
Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
(
3
), pp.
399
404
.
15.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
, 2000, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
2
), pp.
300
308
.
16.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
17.
Chung
,
Y. S.
,
Lee
,
D. H.
, and
Ligrani
,
P. M.
, 2005, “
Jet Impingement Cooling of Chips Equipped With Cylindrical Pedestal Profile Fins
,”
ASME J. Electron. Packag.
1043-7398,
127
(
2
), pp.
106
112
.
18.
Dunne
,
S. T.
, 1983, “
A Study of Flow and Heat Transfer in Gas Turbine Cooling Passages
,” Ph.D. thesis, Oxford University, Oxford, U.K.
19.
Kline
,
S. J.
, and
McKlintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
20.
Morris
,
G. K.
,
Garmella
,
S. V.
, and
Amano
,
R. S.
, 1996, “
Prediction of Jet Impingement Heat Transfer Using a Hybrid Wall Treatment With Different Turbulent Prandtl Number Functions
,”
ASME J. Heat Transfer
0022-1481,
118
(
3
), pp.
562
569
.
You do not currently have access to this content.