Gd2O3-doped ceria (GCO) is irreplaceable as interface/buffer layer between a mixed conducting cathode such as La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) and an 8mol%Y2O3 stabilized ZrO2 (8YSZ) thin film electrolyte. To meet the demands of high performance, indispensable characteristics of this interface (LSCF/GCO/8YSZ) are (i) no reaction of GCO with LSCF or YSZ and (ii) a GCO layer that is defect-free (closed porosity, no cracks). It is well known that state-of-the-art screen printed and sintered GCO buffer layers are imperfect and ultimately reduce the overall performance. This study concentrates on the evaluation of nanoscaled GCO thin films integrated into anode supported cells (ASC). GCO thin films were deposited on 8YSZ electrolyte by a low temperature metal organic deposition (MOD) process. MOD is preferable because it is a versatile technique for large scale and low cost fabrication for various material compositions. The authors investigated the influence of preparation parameters with respect to chemical homogeneity and film quality (pores, cracks) of GCO thin films with a constant film thickness between 50 nm and 100 nm. Electrochemical performance of anode supported cells employing MOD derived GCO thin films will be presented in terms of ohmic resistance (ASRΩ) and will be evaluated in contrast to screen printed and sintered GCO thick films. Nanoscale MOD derived thin films with low processing temperatures and dense film qualities were vastly superior to state-of-the-art GCO and beneficial to the overall cell performance.

1.
Yamamoto
,
O.
,
Takeda
,
Y.
,
Kanno
,
R.
, and
Noda
,
M.
, 1987, “
Perovskite-Type Oxides as Oxygen Electrodes for High Temperature Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
22
(
2–3
), pp.
241
246
.
2.
Chen
,
C. C.
,
Nasrallah
,
M. M.
, and
Anderson
,
H. U.
, 1993, “
Cathode/Electrolyte Interactions and Their Expected Impact on SOFC Performance
,”
Proceedings of the Third International Symposium on Solid Oxide Fuel Cells (SOFC-III)
, Vol.
1
,
S. C.
Singhal
and
H.
Iwahara
, eds.,
The Electrochemical Society
,
Pennington, NJ
, pp.
598
612
.
3.
Zheng
,
K.
,
Steele
,
B. C. H.
,
Sahibzada
,
M.
, and
Metcalfe
,
I. S.
, 1996, “
Solid Oxide Fuel Cells Based on Ce(Gd)O2−x Electrolytes
,”
Solid State Ionics
0167-2738,
86–88
, pp.
1241
1244
.
4.
Tietz
,
F.
,
Fu
,
Q.
,
Haanappel
,
V. A. C.
,
Mai
,
A.
,
Menzler
,
N. H.
, and
Uhlenbruck
,
S.
, 2007, “
Materials Development for Advanced Planar Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
4
(
5
), pp.
436
445
.
5.
Wang
,
Z. W.
,
Hashimoto
,
S. I.
, and
Mori
,
M.
, 2009, “
Investigation and Optimization of Interface Reactivity Between Ce0.9Gd0.1O1.95 and Zr0.89Sc0.1Ce0.01O2-Delta for High Performance Intermediate Temperature-Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
193
(
1
), pp.
49
54
.
6.
Jordan
,
N.
,
Assenmacher
,
W.
,
Uhlenbruck
,
S.
,
Haanappel
,
V. A. C.
,
Buchkremer
,
H. P.
,
Stover
,
D.
, and
Mader
,
W.
, 2008, “
Ce0.8Gd0.2O2-δ Protecting Layers Manufactured by Physical Vapor Deposition for IT-SOFC
,”
Solid State Ionics
0167-2738,
179
(
21–26
), pp.
919
923
.
7.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2009, “
Low Temperature Operated SOFCs Using Ceria Based Electrolyte
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
77
(
2
), pp.
134
136
.
8.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells Part I. Variation of Composition
,”
Solid State Ionics
0167-2738,
176
(
15–16
), pp.
1341
1350
.
9.
Tsoga
,
A.
,
Naoumidis
,
A.
, and
Stöver
,
D.
, 2000, “
Total Electrical Conductivity and Defect Structure of ZrO2–CeO2–Y2O3–Gd2O3 Solid Solutions
,”
Solid State Ionics
0167-2738,
135
, pp.
403
409
.
10.
Weber
,
A.
,
Müller
,
A. C.
,
Herbstritt
,
D.
, and
Ivers-Tiffée
,
E.
, 2001, “
Characterization of SOFC Single Cells
,”
Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII)
,
H.
Yokokawa
and
S. C.
Singhal
, eds.,
The Electrochemical Society
,
Pennington, NJ
, pp.
952
962
.
11.
Tai
,
L. W.
,
Nasrallah
,
M. M.
,
Anderson
,
H. U.
,
Sparlin
,
D. M.
, and
Sehlin
,
S. R.
, 1995, “
Structure and Electrical-Properties of La1−XSrxCo1−YFeyO3 Part 1. The System La0.8Sr0.2Co1−yFeyO3
,”
Solid State Ionics
0167-2738,
76
(
3–4
), pp.
259
271
.
12.
Müller
,
A. C.
, 2004, “
Mehrschicht-Anode für die Hochtemperatur-Brennstoffzelle (SOFC)
,” Ph.D. thesis, Universität Karlsruhe (TH), Karlsruhe, Germany.
13.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
0013-4686,
45
(
15–16
), pp.
2423
2435
.
14.
Poulsen
,
F. W.
, and
van der Puil
,
N.
, 1992, “
Phase Relations and Conductivity of Sr- and La-Zirconates
,”
Solid State Ionics
0167-2738,
53–56
, pp.
777
783
.
You do not currently have access to this content.