In a fuel cell system the stack is strongly coupled with the main system components, among which the compressor is one of the most important. Malfunction of this auxiliary device (delay during peak power, low stoichiometry operation, emergency stop, etc.) is directly responsible for bad oxygen distribution in the cathode (substoichiometry reactants feeding). This phenomenon is usually called oxygen starvation. In this study we want to identify the consequences of oxygen starvation on the performance and durability of polymer electrolyte membrane fuel cell stacks, and more particularly, on the current distribution along the cell. The oxygen concentration decreases along the channel and induces a change in the local electrochemical response; it means that the local current density on the cell is redistributed on the surface. This bad distribution of reactive gas (in a transient time or long time) decreases the performance but may also have an effect on cathode degradation such as carbon corrosion and platinum dissolution/oxidation. The current distribution along the cell is studied by two approaches (modeling and experiments). The 3D model using serpentine bipolar plate meshing is adapted to dynamically compute for the catalyst layer local conditions (local current, temperature, gases partial pressure, and water activity). It is able to reproduce the conditions of low or high oxygen concentration in the cathode side. The experiments are performed with a bi-cell stack developed by CEA with specific design for the magnetic sensors (the local current is computed by measuring the local induced magnetic field and using the Maxwell equations).

1.
Wu
,
J.
,
Yuan
,
X.-Z.
,
Martin
,
J. J.
,
Wang
,
H.
,
Zhang
,
Z.
,
Shen
,
J.
,
Wu
,
S.
, and
Merida
,
W.
, 2008, “
A Review of PEM Fuel Cell Durability: Degradation Mechanism and Mitigation Strategies
,”
J. Power Sources
0378-7753,
184
, pp.
104
119
.
2.
Pischinger
,
S.
, and
Lang
,
O.
, 2003, “
Air-Supply Components
,”
Handbook of Fuel Cells, Fundamentals, Technology and Applications
,
John Wiley & Sons
, Vol.
4
, Chap. 54, pp.
727
741
.
3.
Tekin
,
M.
,
Hissel
,
D.
,
Pera
,
M.-C.
, and
Kauffmann
,
J.-M.
, 2006, “
Energy Consumption Reduction of a PEM Fuel Cell Motor-Compressor Group Thanks to Efficient Control Laws
,”
J. Power Sources
0378-7753,
156
(
1
), pp.
57
63
.
4.
Yu
,
S.
,
Kim
,
H. S.
,
Lee
,
Y. D.
, and
Ahn
,
K. Y.
, 2008, “
A Dynamic Model of PEMFC System for the Simulation of Residential Power Generation
,”
Proceedings of the Sixth International Conference on Fuel Cell Science, Engineering and Technologies
, Denver, CO, Jun. 16–18.
5.
Qu
,
S.
,
Li
,
X.
,
Hou
,
M.
,
Shao
,
Z.
, and
Yi
,
B.
, 2008, “
The Effect of Air Stoichiometry Change on the Dynamic Behavior of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
185
, pp.
302
310
.
6.
Ghosh
,
P. C.
,
Wüster
,
T.
,
Dohle
,
H.
,
Kimiaie
,
N.
,
Mergel
,
J.
, and
Stolten
,
D.
, 2006, “
In Situ Approach for Current Distribution Measurement in Fuel Cells
,”
J. Power Sources
0378-7753,
154
, pp.
184
191
.
7.
Gerard
,
M.
,
Poirot-Crouvezier
,
J. P.
,
Schott
,
P.
, and
Franco
,
A. A.
, 2008, “
PEMFC Fuel Cell/System Interactions: Analysis of the Stack Conditions to Minimize the Oxygen Starvation and Impact on the Fuel Cell Degradation Performance
,”
Proceedings of the FDFC Conference
, Nancy, France.
8.
Liu
,
Z.
,
Yang
,
L.
,
Mao
,
Z.
,
Zhuge
,
W.
,
Zhang
,
Y.
, and
Wang
,
L.
, 2006, “
Behavior of PEMFC in Starvation
,”
J. Power Sources
0378-7753,
157
, pp.
166
176
.
9.
Vahidi
,
A.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004, “
Model Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System
,”
Proceedings of the American Control Conference
, Vol.
1
, pp.
834
839
.
10.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004, “
Control of Fuel Cell Breathing
,”
IEEE Control Syst. Mag.
0272-1708,
24
(
2
), pp.
30
46
.
11.
Sun
,
J.
, and
Kolmanovsky
,
I. V.
, 2005, “
Load Governor for Fuel Cell Oxygen Starvation, Protection: A Robust Nonlinear Reference Governor Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
911
920
.
12.
Taniguchi
,
A.
,
Akita
,
T.
,
Yasuda
,
K.
, and
Miyazaki
,
Y.
, 2004, “
Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal During Fuel Cell Starvation
,”
J. Power Sources
0378-7753,
130
, pp.
42
49
.
13.
Franco
,
A. A.
, and
Gerard
,
M.
, 2008, “
Multiscale Model of Carbon Corrosion in a PEFC: Coupling With Electrocatalysis and Impact on Performance Degradation
,”
J. Electrochem. Soc.
0013-4651,
155
(
4
), pp.
B367
B384
.
14.
Taniguchi
,
A.
,
Akita
,
T.
,
Yasuda
,
K.
, and
Miyazaki
,
Y.
, 2008, “
Analysis of Degradation in PEMFC Caused by Cell Reversal During Air Starvation
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
2323
2329
.
15.
Franco
,
A. A.
, and
Tembely
,
M.
, 2007, “
Transient Multiscale Modeling of Aging Mechanisms in a PEFC Cathode
,”
J. Electrochem. Soc.
0013-4651,
154
(
7
), pp.
B712
B723
.
16.
Sompalli
,
B.
,
Litteer
,
B. A.
,
Gu
,
W.
, and
Gasteiger
,
H. A.
, 2007, “
Membrane Degradation at Catalyst Layer Edges in PEMFC MEAs
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1349
B1357
.
17.
Poirot-Crouvezier
,
J. P.
, 2000, “
Modélisation dynamique des phénomènes hydrauliques, thermiques et électriques dans un groupe électrogène à pile à combustible
,” Ph.D. thesis, 00 INPG 0152.
18.
Schott
,
P.
, and
Baurens
,
P.
, 2006, “
Fuel Cell Operation Characterization Using Simulation
,”
J. Power Sources
0378-7753,
156
, pp.
85
91
.
19.
Gerard
,
M.
,
Poirot-Crouvezier
,
J. P.
,
Schott
,
P.
,
Hissel
,
D.
, and
Pera
,
M. C.
, 2008, “
Multi-Physic PEMFC Stack 3D Model: A New Discretization to Understand the Effect of the System Parameters to the Local Conditions
,”
Proceedings of the FDFC Conference
, Nancy, France.
20.
Candusso
,
D.
,
Poirot-Crouvezier
,
J. P.
,
Bador
,
B.
,
Rullière
,
E.
,
Soulier
,
R.
, and
Voyant
,
J. Y.
, 2004, “
Determination of Current Density Distribution in Proton Exchange Membrane Fuel Cells
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
25
, pp.
67
74
.
21.
Chikahisa
,
T.
,
Tabe
,
Y.
,
Kikuta
,
K.
, and
Nohara
,
N.
, 2006, “
Measurement of Water Production Phenomena, Temperature, and Current Density Distributions in a Polymer Electrolyte Fuel Cell
,”
Proceedings of the Fourth International Conference on Fuel Cell Science, Engineering and Technologies
, Irvine, CA, Jun. 19–21.
22.
Strickland
,
D. G.
,
Lister
,
S.
, and
Santiago
,
J. G.
, 2007, “
Current Distribution in Polymer Electrolyte Membrane Fuel Cell With Active Water Management
,”
J. Power Sources
0378-7753,
174
, pp.
272
281
.
23.
Noponen
,
M.
,
Mennola
,
T.
,
Mikkola
,
M.
,
Hottinen
,
T.
, and
Lund
,
P.
, 2002, “
Measurement of Current Distribution in a Free-Breathing PEMFC
,”
J. Power Sources
0378-7753,
106
, pp.
304
312
.
24.
Ghosh
,
P. C.
,
Wüster
,
T.
,
Dohle
,
H.
,
Kimiaie
,
N.
,
Mergel
,
J.
, and
Stolten
,
D.
, 2006, “
Analysis of Single PEM Fuel Cell Performances Based on Current Density Distribution Measurement
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
351
357
.
You do not currently have access to this content.