A mathematical multilayer, multispecies two-phase model for polymer electrolyte fuel cells (PEFCs) is presented based on fundamental molecular theory using the general transport equation (GTE). The GTE was previously developed and applied to bridge the gap that exists between the benchmark modeling philosophies in the literature for transport across the PEFC. In the current work, the GTE is applied with Darcy’s law to describe water transport and water uptake through the porous and quasiporous layers of a PEFC under single- and two-phase operating conditions. The characteristic transport equations and available material properties from the literature are translated into a single-cell fuel cell model, which is implemented using the object modeling technique. The PEFC model is applied to predict and validate the net water transport ratio and water content under a range of operating conditions. The numerical model exhibits good agreement with experimental data under both vapor- and liquid-equilibrated conditions. The model is then applied in a water transport study to determine the effects of cell compression on local water content, liquid water intrusion, water transport, and Ohmic resistance across nonreinforced polymer electrolyte membranes (PEMs) under two-phase operating conditions. The modeling results suggest that the presence of liquid water at the cathodic boundary of the PEM and a well-established liquid water network can affect water uptake and water transport and can reduce the Ohmic resistance of the PEM.

1.
Rama
,
P.
,
Chen
,
R.
, and
Andrews
,
J.
, 2008, “
A Review of Performance Degradation and Failure Modes for Hydrogen-Fuelled Polymer Electrolyte Fuel Cells
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
222
(
5
), pp.
421
441
.
2.
Rama
,
P.
,
Chen
,
R.
, and
Andrews
,
J.
, 2008, “
Failure Analysis of Polymer Electrolyte Fuel Cells
,” SAE Technical Paper Series No. 2008-01-0634.
3.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
(
10
), pp.
4727
4766
.
4.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
(
10
), pp.
4679
4726
.
5.
Springer
,
T.
,
Zawodzinksi
,
T.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
6.
Bernardi
,
D.
, and
Verbrugge
,
M.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
7.
Fuller
,
T.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1218
1225
.
8.
Wang
,
C. Y.
, and
Cheng
,
P.
, 1997, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Adv. Heat Transfer
0065-2717,
30
, pp.
93
182
.
9.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
10.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
11.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
12.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
2
), pp.
A380
A390
.
13.
Pasaogullari
,
U.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2005, “
Two-Phase Transport in Polymer Electrolyte Fuel Cells With Bilayer Cathode Gas Diffusion Media
,”
J. Electrochem. Soc.
0013-4651,
152
(
8
), pp.
A1574
A1582
.
14.
Luo
,
G.
,
Ju
,
H.
, and
Wang
,
C. Y.
, 2007, “
Prediction of Dry-Wet-Dry Transition in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
3
), pp.
B316
B321
.
15.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2007, “
Two-Phase Transients of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
7
), pp.
B636
B643
.
16.
Birgersson
,
E.
,
Noponen
,
M.
, and
Vynnycky
,
M.
, 2005, “
Analysis of a Two-Phase Non-Isothermal Model for a PEFC
,”
J. Electrochem. Soc.
0013-4651,
152
(
5
), pp.
A1021
A1034
.
17.
Djilali
,
N.
, and
Lu
,
D.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
29
40
.
18.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1589
A1598
.
19.
Acosta
,
M.
,
Merten
,
C.
,
Eigenberger
,
G.
,
Class
,
H.
,
Helmig
,
R.
,
Thoben
,
B.
, and
Muller-Steinhagen
,
H.
, 2006, “
Modeling Non-Isothermal Two-Phase Multicomponent Flow in the Cathode of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
, pp.
1123
1141
.
20.
Natarajan
,
D.
, and
Van Nguyen
,
T.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
(
12
), pp.
A1324
1335
.
21.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
22.
Hanamura
,
K.
, and
Kaviany
,
M.
, 1995, “
Propagation of Condensate Front in Steam Injection into Dry Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
8
), pp.
1377
1386
.
23.
McKay
,
D.
,
Siegel
,
J. B.
,
Ott
,
W.
, and
Stefanopoulou
,
A. G.
, 2008, “
Parameterization and Prediction of Temporal Fuel Cell Voltage Behaviour During Flooding and Drying Conditions
,”
J. Power Sources
0378-7753,
178
, pp.
207
222
.
24.
Leverett
,
M. C.
, 1941, “
Capillary Behaviour in Porous Solids
,”
Trans. AIME
0096-4778,
142
, pp.
159
172
.
25.
Ye
,
Q.
, and
Van Nguyen
,
T.
, 2007, “
Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC With Experimentally Measured Capillary Functions
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1242
B1251
.
26.
Wang
,
X.
, and
Van Nguyen
,
T.
, 2008, “
Modelling the Effects of Capillary Property of Porous Media on the Performance of the Cathode of PEMFC
,”
J. Electrochem. Soc.
0013-4651,
155
(
11
), pp.
B1085
B1092
.
27.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Ioannidis
,
M. A.
,
Pritzker
,
M. D.
,
Volfkovich
,
Y. M.
, and
Sakars
,
A.
, 2006, “
Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
156
, pp.
375
387
.
28.
Weber
,
A. Z.
,
Darling
,
R. M.
, and
Newman
,
J.
, 2004, “
Modeling Two-Phase Behaviour in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
10
), pp.
A1715
A1727
.
29.
Harkness
,
I. R.
,
Hussain
,
N.
,
Smith
,
L.
, and
Sharman
,
J. D. B.
, 2009, “
The Use of a Novel Water Porosimeter to Predict the Water Handling Behaviour of Gas Diffusion Media Used in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
193
(
1
), pp.
122
129
.
30.
Berg
,
P.
,
Promislow
,
K.
,
St. Pierre
,
J.
,
Stumper
,
J.
, and
Wetton
,
B.
, 2004, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A341
A353
.
31.
Ge
,
S.
,
Li
,
X.
,
Yi
,
B.
, and
Hsing
,
I. -M.
, 2005, “
Absorption, Desorption, and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
6
), pp.
A1149
A1157
.
32.
Sinha
,
P. K.
,
Wang
,
C. Y.
, and
Beuscher
,
U.
, 2007, “
Transport Phenomenon in Elevated Temperature PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
1
), pp.
B106
B116
.
33.
Baschuk
,
J. J.
, and
Li
,
X.
, 2009, “
A Comprehensive, Consistent and Systematic Mathematical Model of PEM Fuel Cells
,”
Appl. Energy
0306-2619,
86
, pp.
181
193
.
34.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
, 1990, “
Ion and Solvent Transport in Ion-Exchange Membranes I. A Macrohomogeneous Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
137
(
3
), pp.
886
893
.
35.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
, 1990, “
Ion and Solvent Transport in Ion-Exchange Membranes II. A Radiotracer Study of the Sulfuric-Acid, Nafion-117 System
,”
J. Electrochem. Soc.
0013-4651,
137
(
3
), pp.
893
899
.
36.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
, 1990, “
Transport Phenomena in Perfluorosulfonic Acid Membranes During the Passage of Current
,”
J. Electrochem. Soc.
0013-4651,
137
(
4
), pp.
1131
1138
.
37.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
38.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 1999, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
431
452
.
39.
Janssen
,
G. J. M.
, 2001, “
A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
148
(
12
), pp.
A1313
A1323
.
40.
Bass
,
M.
, and
Freger
,
V.
, 2006, “
An Experimental Study of Schroeder’s Paradox in Nafion and Dowex Polymer Electrolytes
,”
Desalination
0011-9164,
199
, pp.
277
279
.
41.
Vallieres
,
C.
,
Winklemann
,
D.
,
Roizard
,
D.
,
Favre
,
E.
,
Scharfer
,
P.
, and
Kind
,
M.
, 2006, “
On Schroeder’s Paradox
,”
J. Membr. Sci.
0376-7388,
278
, pp.
357
364
.
42.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes I. Physical Model
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A1008
A1015
.
43.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A311
A325
.
44.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A326
A339
.
45.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells
,”
AIChE J.
0001-1541,
50
(
12
), pp.
3215
3226
.
46.
Ziegler
,
C.
,
Yu
,
H. M.
, and
Schumacher
,
J. O.
, 2005, “
Two-Phase Dynamic Modeling of PEMFCs and Simulation of Cyclo-Voltammograms
,”
J. Electrochem. Soc.
0013-4651,
152
(
8
), pp.
A1555
A1567
.
47.
Rama
,
P.
,
Chen
,
R.
, and
Thring
,
R.
, 2006, “
Polymer Electrolyte Fuel Cell Transport Mechanisms: A Universal Modelling Framework from Fundamental Theory
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
220
, pp.
535
550
.
48.
Newman
,
J.
, 1973,
Electrochemical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
49.
Gebel
,
G.
, 2000, “
Structural Evolution of Water Swollen Perfluorosulfonated Ionomers From Dry Membrane to Solution
,”
Polymer
0032-3861,
41
, pp.
5829
5838
.
50.
Mauritz
,
K. A.
, and
Moore
,
R. B.
, 2004, “
State of Understanding of Nafion
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4535
4586
.
51.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1993, “
Water Uptake by and Transport Through Nafion 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
(
4
), pp.
1041
1047
.
52.
Slade
,
S.
,
Campbell
,
S. A.
,
Ralph
,
T. R.
, and
Walsh
,
F. C.
, 2002, “
Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes
,”
J. Electrochem. Soc.
0013-4651,
149
(
12
), pp.
A1556
A1564
.
53.
Rama
,
P.
,
Chen
,
R.
, and
Thring
,
R.
, 2005, “
A Polymer Electrolyte Membrane Fuel Cell Model With Multi-Species Input
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
, pp.
255
271
.
54.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media III. Temperature Effect and Unified Approach
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1315
B1324
.
55.
Senn
,
S. M.
, and
Poulikakos
,
D.
, 2005, “
Multiphase Transport Phenomena in the Diffusion Zone of a PEM Fuel Cell
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1245
1259
.
56.
Mason
,
E. A.
, and
Malinauskas
,
A. P.
, 1983,
Gas Transport in Porous Media: The Dusty Gas Model
,
Elsevier Science
,
Amsterdam
.
57.
Sriskandarajah
,
S. D.
, 2008, “
Thermophysical Properties of Heat Pipe Working Fluids: Operating Range Between −60°C and −300°C
,” ESDU, p.
80017
.
58.
Atkins
,
P.
, and
de Paula
,
J.
, 2006,
Physical Chemistry
,
Oxford University Press
,
New York
.
59.
Volfkovich
,
Y. M.
,
Bagotzky
,
V. S.
,
Sosenkin
,
V. E.
, and
Blinov
,
I. A.
, 2001, “
The Standard Contact Porosimetry
,”
Colloids Surf., A
0927-7757,
187–188
, pp.
349
365
.
60.
Divisek
,
J.
,
Eikerling
,
M.
,
Mazin
,
V.
,
Schmitz
,
H.
,
Stimming
,
U.
, and
Volfkovich
,
Y. M.
, 1998, “
A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water
,”
J. Electrochem. Soc.
0013-4651,
145
(
8
), pp.
2677
2683
.
61.
Rumbaugh
,
J.
,
Blaha
,
M.
,
Premerlani
,
W.
,
Eddy
,
F.
, and
Lorensen
,
W.
, 1991,
Object-Oriented Modeling and Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
62.
Meyer
,
B.
, 1988,
Object-Oriented Software Construction
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
63.
Takaichi
,
S.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2007, “
Response of Specific Resistance Distribution in Electrolyte Membrane to Load Change at PEFC Operation
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1373
B1377
.
64.
Ikeda
,
T.
,
Koido
,
T.
,
Tsushima
,
S.
, and
Hirai
,
S.
, 2008, “
MRI Investigation of Water Transport Mechanism in a Membrane Under Elevated Temperature Condition With Relative Humidity and Current Density Variation
,”
ECS Trans.
1938-5862,
16
(
2
), pp.
1035
1040
.
65.
Tsushima
,
S.
,
Teranishi
,
K.
,
Nishida
,
K.
, and
Hirai
,
S.
, 2005, “
Water Content Distribution in a Polymer Electrolyte Membrane for Advanced Fuel Cell System With Liquid Water Supply
,”
Magn. Reson. Imaging
0730-725X,
23
, pp.
255
258
.
66.
Krewer
,
U.
,
Yoon
,
H. -K.
, and
Kim
,
H. -T.
, 2008, “
Basic Model for Membrane Electrode Assembly Design for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
175
, pp.
760
772
.
67.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2009, “
Numerical Investigation of Effect of Membrane Electrode Assembly Structure on Water Crossover in a Liquid-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
188
, pp.
433
446
.
68.
Solecki
,
R.
, and
Conant
,
R. J.
, 2003,
Advanced Mechanics of Materials
,
Oxford University Press
,
New York
.
69.
Choi
,
P.
,
Jalani
,
N. H.
, and
Datta
,
R.
, 2005, “
Thermodynamics and Proton Transport in Nafion I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium
,”
J. Electrochem. Soc.
0013-4651,
152
(
3
), pp.
E84
E89
.
70.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2007, “
On mechanical Behaviour and In-Plane Modeling of Constrained PEM Fuel Cell Membrane Subjected to Hydration and Temperature Cycles
,”
J. Power Sources
0378-7753,
167
, pp.
366
377
.
You do not currently have access to this content.