Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particular entrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.

1.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
, 2006, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
284
291
.
2.
Shukla
,
A. K.
,
Jackson
,
C. L.
, and
Scott
,
K.
, 2003, “
The Promise of Fuel Cell-Based Automobiles
,”
Bull. Mater. Sci.
0250-4707,
26
(
2
), pp.
207
214
.
3.
Thomas
,
C. E.
,
James
,
B. D.
,
Lomax
,
F. D.
, Jr.
, and
Kuhn
,
I. F.
, Jr.
, 2000, “
Fuel Options for the Fuel Cell Vehicle: Hydrogen, Methanol or Gasoline?
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
551
567
.
4.
Lee
,
J. -H.
,
Sameen
,
A.
,
Kumar
,
V. S.
, and
Kim
,
H.
, 2005, “
Studies on Ejector Systems for Hydrogen Fuel Cell
,”
41st Joint Propulsion Conference
.
5.
Chunnanond
,
K.
, and
Aphornratana
,
S.
, 2004, “
Ejectors: Applications in Refrigeration Technology
,”
Renewable Sustainable Energy Rev.
1364-0321,
8
, pp.
129
155
.
6.
Huang
,
B.
,
Jiang
,
C.
, and
Hu
,
F.
, 1985, “
Ejector Performance Characteristics and Design Analysis of Jet Refrigeration System
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
792
802
.
7.
Alperin
,
M.
, and
Wu
,
J. -J.
, 1983, “
Thrust Augmenting Ejectors Part I
,”
AIAA J.
0001-1452,
21
(
10
), pp.
1428
1436
.
8.
Alperin
,
M.
, and
Wu
,
J. -J.
, 1983, “
Thrust Augmenting Ejectors Part II
,”
AIAA J.
0001-1452,
21
(
12
), pp.
1698
1706
.
9.
Dutton
,
J.
,
Mikkelsen
,
C.
, and
Addy
,
A.
, 1982, “
A Theoretical and Experimental Investigation of the Constant Area, Supersonic-Supersonic Ejector
,”
AIAA J.
0001-1452,
20
(
10
), pp.
1392
1400
.
10.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
, 2007, “
Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System
,”
J. Power Sources
0378-7753,
173
, pp.
437
449
.
11.
Karnik
,
A. Y.
,
Sun
,
J.
, and
Buckland
,
J. H.
, 2006, “
Control Analysis of an Ejector Based Fuel Cell Anode Recirculation System
,”
Proceedings of the 2006 American Control Conference
, Minneapolis, MN, pp.
1942
1948
.
12.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2005, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power Sources
0378-7753,
149
, pp.
22
32
.
13.
Keenan
,
J.
, and
Neumann
,
E.
, 1942, “
A Simple Air Ejector
,”
ASME Trans. J. Appl. Mech.
0021-8936,
64
, pp.
A75
A81
.
14.
Keenan
,
J.
,
Neumann
,
E.
, and
Lustwerk
,
F.
, 1950, “
An Investigation of Ejector Design by Analysis and Experiment
,”
ASME Trans. J. Appl. Mech.
0021-8936,
72
, pp.
299
309
.
15.
Dutton
,
J.
, and
Carroll
,
B.
, 1986, “
Optimal Supersonic Ejector Designs
,”
ASME J. Fluids Eng.
0098-2202,
108
, pp.
414
420
.
16.
Fabri
,
J.
, and
Paulon
,
J.
, 1958,
Theory and Experiment on Supersonic Air-to-Air Ejectors
,
National Advisory Committee for Aeronautics (NACA)
,
USA
.
17.
Addy
,
A. L.
, and
Chow
,
W. L.
, 1964, “
Interaction Between Primary and Secondary Streams of Supersonic Ejector Systems and Their Performance Characteristics
,”
AIAA J.
0001-1452,
2
(
4
), pp.
686
695
.
18.
Addy
,
A.
,
Dutton
,
J.
, and
Mikkelensen
,
C.
, 1981,
Supersonic Ejector-Diffuser Theory and Experiment
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
19.
Munday
,
J. T.
, and
Bagster
,
D. F.
, 1997, “
A New Ejector Theory Applied to a Steam Jet Refrigeration
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
16
(
4
), pp.
442
449
.
20.
Chou
,
S. K.
,
Yang
,
P. R.
, and
Yap
,
C.
, 2001, “
Maximum Mass Flow Ratio Due to Secondary Flow Choking in an Ejector Refrigeration System
,”
Int. J. Refrig.
0140-7007,
24
(
6
), pp.
486
499
.
21.
Arbel
,
A.
,
Shkiyar
,
A.
,
Hershgal
,
D.
,
Barak
,
M.
, and
Sokolov
,
M.
, 2003, “
Ejector Irreversibility Characteristics
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
121
129
.
22.
Omkar
,
S.
,
Mudigere
,
D.
,
Naik
,
G. N.
, and
Gopalakrishnan
,
S.
, 2008, “
Vector Evaluated Particle Swarm Optimization (VEPSO) for Multi-Objective Design Optimization of Composite Structures
,”
Comput. Struct.
0045-7949,
86
, pp.
1
14
.
23.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
, Piscataway, NJ, pp.
1942
1948
.
24.
De Chant
,
L. J.
, 2003, “
Subsonic Ejector Nozzle Limiting Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
851
854
.
You do not currently have access to this content.