The operating conditions of a solid oxide fuel cell (SOFC) system that result in maximum efficiency needs to be studied by considering the whole closed circuit system because operating at maximum cell efficiency may not lead to maximum system efficiency. In this paper, this study is performed with the aid of a comprehensive steady state model of the SOFC, the after-burner, and the heat exchangers. In order to account for the large irreversibilities, the SOFC model is derived by the application of the second law of thermodynamics to the fuel cell control volumes. The SOFC system efficiency is maximized by employing a recursive algorithm with two cascaded optimization loops, which also gives the corresponding cell operating conditions. Complex control laws are required for controlling the SOFC system for maximum efficiency. On the other hand, it is found that an appropriately chosen constant fuel utilization operation closely approximates the maximum efficiency operation of the fuel cell in its operating range.

1.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
, pp.
188
200
.
2.
Kazim
,
A.
, 2004, “
Exergy Analysis of a PEM Fuel Cell at Variable Operating Conditions
,”
Energy Convers. Manage.
0196-8904,
45
, pp.
1949
1961
.
3.
Saidi
,
M. H.
,
Ehyaei
,
M. A.
, and
Abbasi
,
A.
, 2005, “
Optimization of a Combined Heat and Power PEFC by Exergy Analysis
,”
J. Power Sources
0378-7753,
143
, pp.
179
184
.
4.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Power Plant
,”
J. Power Sources
0378-7753,
158
, pp.
225
244
.
5.
Akkaya
,
A. V.
,
Sahin
,
B.
, and
Erdem
,
H. H.
, 2007, “
Exergetic Performance Coefficient Analysis of a Simple Fuel Cell System
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
4600
4609
.
6.
Song
,
S.
,
Douvartzides
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Exergy Analysis of an Ethanol Fuelled Proton Exchange Membrane (PEM) Fuel Cell System for Automobile Applications
,”
J. Power Sources
0378-7753,
145
, pp.
502
514
.
7.
Monanteras
,
N. C.
, and
Frangopoulos
,
C. A.
, 1999, “
Towards Synthesis Optimization of a Fuel-Cell Based Plant
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1733
1742
.
8.
Lin
,
H. H.
,
Cheng
,
C. H.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Yan
,
W. M.
, 2006, “
Optimization of Key Parameters in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
162
, pp.
246
254
.
9.
Wu
,
J.
,
Liu
,
Q.
, and
Fang
,
H.
, 2006, “
Toward the Optimization of Operating Conditions for Hydrogen Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
156
, pp.
388
399
.
10.
Yeh
,
T. K.
, and
Chen
,
C. H.
, 2008, “
Modeling and Optimizing the Performance of a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
175
, pp.
353
362
.
11.
Douvartzides
,
S. L.
,
Coutelieris
,
F. A.
, and
Tsiakaras
,
P. E.
, 2003, “
On the Systematic Optimization of Ethanol Fed SOFC-Based Electricity Generating Systems in Terms of Energy and Exergy
,”
J. Power Sources
0378-7753,
114
, pp.
203
212
.
12.
Palazzi
,
F.
,
Autissier
,
N.
,
Marechal
,
F. M. A.
, and
Favrat
,
D.
, 2007, “
A Methodology for Thermo-Economic Modeling and Optimization of Solid Oxide Fuel Cell Systems
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
2703
2712
.
13.
Frangopoulos
,
C. A.
, and
Nakos
,
L. G.
, 2006, “
Development of a Model For Thermoeconomic Design and Operation Optimization of a PEM Fuel Cell System
,”
Energy
0360-5442,
31
, pp.
1501
1519
.
14.
Chen
,
K. I.
,
Winnick
,
J.
, and
Manousiouthakis
,
V. I.
, 2006, “
Global Optimization of a Simple Mathematical Model for a Proton Exchange Membrane Fuel Cell
,”
Comput. Chem. Eng.
0098-1354,
30
, pp.
1226
1234
.
15.
Subramanyan
,
K.
, and
Diwekar
,
U. M.
, 2007, “
Optimizing Model Complexity With Application to Fuel Cell Based Power Systems
,”
Chem. Eng. Process.
0255-2701,
46
, pp.
1116
1128
.
16.
Na
,
W.
, and
Gou
,
B.
, 2007, “
The Efficient and Economic Design of PEM Fuel Cell Systems by Multi-Objective Optimization
,”
J. Power Sources
0378-7753,
166
, pp.
411
418
.
17.
Cownden
,
R.
,
Nahon
,
M.
, and
Rosen
,
M. A.
, 2001, “
Exergy Analysis of a Fuel Cell Power System for Transportation Applications
,”
Exergy Int. J.
,
1
(
2
), pp.
112
121
.
18.
Hussain
,
M. M.
,
Baschuk
,
J. J.
,
Li
,
X.
, and
Dincer
,
I.
, 2005, “
Thermodynamic Analysis of a PEM Fuel Cell Power System
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
903
911
.
19.
Mert
,
S. O.
,
Dincer
,
I.
, and
Ozcelik
,
Z.
, 2007, “
Exergoeconomic Analysis Vehicular PEM Fuel Cell System
,”
J. Power Sources
0378-7753,
165
, pp.
244
252
.
20.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
144
154
.
21.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2005, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
0378-7753,
147
, pp.
136
147
.
22.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
158
, pp.
303
315
.
23.
Hasikos
,
J.
,
Sarimveis
,
H.
,
Zervas
,
P. L.
, and
Markatos
,
N. C.
, 2009, “
Operational Optimization and Real-Time Control of Fuel-Cell Systems
,”
J. Power Sources
0378-7753,
193
, pp.
258
268
.
24.
Golbert
,
J.
, and
Lewin
,
D. R.
, 2007, “
Model-Based Control Of Fuel Cells (2): Optimal Efficiency
,”
J. Power Sources
0378-7753,
173
, pp.
298
309
.
25.
Vijay
,
P.
,
Samantaray
,
A. K.
, and
Mukherjee
,
A.
, 2008, “
Bond Graph Model of a Solid Oxide Fuel Cell With a C-field for Mixture of Two Gas Species
,”
Proc. IMechE, Part I: J. Systems and Control Engineering
,
222
(
4
), pp.
247
259
.
26.
Benson
,
R. S.
, 1977,
Advanced Engineering Thermodynamics
,
Pergamon
,
Oxford, UK
, pp.
265
329
.
27.
Qi
,
Y.
,
Huang
,
B.
, and
Chuang
,
K. T.
, 2005, “
Dynamic Modeling of Solid Oxide Fuel Cell: The Effect of Diffusion and Inherent Impedance
,”
J. Power Sources
0378-7753,
150
, pp.
32
47
.
28.
Murshed
,
A. K. M. M.
,
Huang
,
B.
, and
Nandakumar
,
K.
, 2007, “
Control Relevant Modeling of Planar Solid Oxide Fuel Cell System
,”
J. Power Sources
0378-7753,
163
, pp.
830
845
.
29.
Rosen
,
M. A.
, 1990, “
Comparison Based on Energy and Exergy Analyses of the Potential Cogeneration Efficiencies for Fuel Cells and Other Electricity Generation Devices
,”
Int. J. Hydrogen Energy
0360-3199,
15
(
4
), pp.
267
274
.
30.
Rosen
,
M. A.
, and
Scott
,
D. S.
, 1988, “
A Thermodynamic Investigation of the Potential for Cogeneration for Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
13
(
12
), pp.
775
782
.
You do not currently have access to this content.