Platinum based binary and ternary catalysts were prepared by thermal decomposition onto a titanium mesh and were evaluated for the anodic oxidation of methanol. The binary Pt:Ru catalyst with a composition of 1:1 gave the highest performance for methanol oxidation at 80°C. The effect of temperature and time for thermal decomposition was optimized with respect to methanol oxidation, and the catalysts were characterized by cyclic voltammetry, linear sweep voltammetry, scanning electron microscopy, X-ray diffraction studies, and X-ray photoelectron spectroscopy. The best catalyst was evaluated in a single fuel cell, and the effect of methanol concentration, temperature, and oxygen/air flow was studied. The mesh-based fuel cell, operating at 80°C with 1moldm3 methanol, gave maximum power densities of 38mWcm2 and 22mWcm2 with 1 bar (gauge) oxygen and air, respectively.

1.
Scott
,
K.
, and
Shukla
,
A. K.
, 2007, “
Direct Methanol Fuel Cells: Fundamentals, Problems and Perspectives
,”
Modern Aspects of Electrochemistry
,
R. E.
White
, ed.,
Springer
, Vol.
40
, pp.
127
227
.
2.
Garcia
,
B. L.
, and
Weidner
,
J. W.
, 2007, “
Review of Direct Methanol Fuel Cells
,”
Modern Aspects of Electrochemistry
,
R. E.
White
, ed.,
Springer
, Vol.
40
, pp.
229
284
.
3.
Aricò
,
A. S.
,
Srinivasan
,
S.
, and
Antonucci
,
V.
, 2001, “
DMFCs: From Fundamental Aspects to Technology Development
,”
Fuel Cells
0532-7822,
1
(
2
), pp.
133
161
.
4.
Wasmus
,
S.
, and
Küver
,
A.
, 1999, “
Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review
,”
J. Electroanal. Chem.
0022-0728,
461
(
1–2
), pp.
14
31
.
5.
Liu
,
H.
,
Song
,
C.
,
Zhang
,
L.
,
Zhang
,
J.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
, 2006, “
A Review of Anode Catalysis in the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
155
(
2
), pp.
95
110
.
6.
Neburchilov
,
V.
,
Martin
,
J.
,
Wang
,
H.
, and
Zhang
,
J.
, 2007, “
A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
169
(
2
), pp.
221
238
.
7.
DeLuca
,
W. N.
, and
Elabd
,
Y. A.
, 2006, “
Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
16
), pp.
2201
2225
.
8.
Jung
,
G. B.
,
Su
,
A.
,
Tu
,
C. H.
, and
Weng
,
F. B.
, 2005, “
Effect of Operating Parameters on the DMFC Performance
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
81
85
.
9.
Jiang
,
L. H.
,
Song
,
S. Q.
,
Zhou
,
Z. H.
,
Yan
,
S. Y.
,
Li
,
H. Q.
,
Sun
,
G. Q.
,
Zhou
,
B.
, and
Xin
,
Q.
, 2005, “Development of Electrocatalysts for Direct Alcohol Fuel Cells,” Indian. J. Chem. A, 44, pp. 913–923.
10.
Antolini
,
E.
, 2003, “
Formation of Carbon-Supported PtM Alloys for Low Temperature Fuel Cells: A Review
,”
Mater. Chem. Phys.
0254-0584,
78
(
3
), pp.
563
573
.
11.
Lamy
,
C.
,
Leger
,
J. M.
, and
Srinivasan
,
S.
, 2001, “
Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-First Century Emerging Technology
,”
Modern Aspects of Electrochemistry
,
J. O.
Bockris
,
B. E.
Conway
, and
R. E.
White
, eds.,
Springer
, Vol.
34
, pp.
53
118
12.
Reddington
,
E.
,
Sapienza
,
A.
,
Gurau
,
B.
,
Viswanathan
,
R.
,
Sarangapani
,
S.
,
Smotkin
,
E. S.
, and
Mallouk
,
T. E.
, 1998, “
Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts
,”
Science
0036-8075,
280
(
5370
), pp.
1735
1737
.
13.
Zhang
,
J.
,
Yin
,
G. P.
,
Lai
,
Q. Z.
,
Wang
,
Z. B.
,
Cai
,
K. D.
, and
Liu
,
P.
, 2007, “
The Influence of Anode Gas Diffusion Layer on the Performance of Low-Temperature DMFC
,”
J. Power Sources
0378-7753,
168
(
2
), pp.
453
458
.
14.
Shao
,
Z. G.
,
Zhu
,
F.
,
Lin
,
W. F.
,
Christensen
,
P. A.
, and
Zhang
,
H.
, 2006, “
PtRu/Ti Anodes With Varying Pt:Ru Ratio Prepared by Electrodeposition for the Direct Methanol Fuel Cell
,”
Phys. Chem. Chem. Phys.
1463-9076,
8
, pp.
2720
2726
.
15.
Scott
,
K.
,
Taama
,
W. M.
,
Kramer
,
S.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
, 1999, “
Limiting Current Behaviour of the Direct Methanol Fuel Cell
,”
Electrochim. Acta
0013-4686,
45
(
6
), pp.
945
957
.
16.
Arisetty
,
S.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
, 2007, “
Metal Foams as Flow Field and Gas Diffusion Layer in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
49
57
.
17.
Reshetenko
,
T. V.
,
Kim
,
H. T.
,
Krewer
,
U.
, and
Kweon
,
H. J.
, 2007, “
The Effect of the Anode Loading and Method of MEA Fabrication on DMFC Performance
,”
Fuel Cells
0532-7822,
7
(
3
), pp.
238
245
.
18.
Xie
,
F.
,
Chen
,
C.
,
Meng
,
H.
, and
Shen
,
P. K.
, 2007, “
Effect of the Anodic Diffusion Layer on the Performance of Liquid Fuel Cells
,”
Fuel Cells
0532-7822,
7
(
4
), pp.
319
322
.
19.
Oedegaard
,
A.
,
Hebling
,
C.
,
Schmitz
,
A.
,
Moller-Holst
,
S.
, and
Tunold
,
R.
, 2004, “
Influence of Diffusion Layer Properties on Low Temperature DMFC
,”
J. Power Sources
0378-7753,
127
(
1–2
), pp.
187
196
.
20.
Liu
,
J. G.
,
Sun
,
G. Q.
,
Zhao
,
F. L.
,
Wang
,
G. X.
,
Zhao
,
G.
,
Chen
,
L. K.
,
Yi
,
B. L.
, and
Xin
,
Q.
, 2004, “
Study of Sintered Stainless Steel Fiber Felt as Gas Diffusion Backing in Air-Breathing DMFC
,”
J. Power Sources
0378-7753,
133
(
2
), pp.
175
180
.
21.
Gogel
,
V.
,
Frey
,
T.
,
Yongsheng
,
Z.
,
Friedrich
,
K. A.
,
Jörissen
,
L.
, and
Garche
,
J.
, 2004, “
Performance and Methanol Permeation of Direct Methanol Fuel Cells: Dependence on Operating Conditions and on Electrode Structure
,”
J. Power Sources
0378-7753,
127
(
1–2
), pp.
172
180
.
22.
Chetty
,
R.
, and
Scott
,
K.
, 2007, “
Direct Ethanol Fuel Cells With Catalysed Metal Mesh Anodes
,”
Electrochim. Acta
0013-4686,
52
(
12
), pp.
4073
4081
.
23.
Trasatti
,
S.
, 2000, “
Electrocatalysis: Understanding the Success of DSA
,”
Electrochim. Acta
0013-4686,
45
(
15–16
), pp.
2377
2385
.
24.
Lim
,
C.
,
Scott
,
K.
,
Allen
,
R. G.
, and
Roy
,
S.
, 2004, “
Direct Methanol Fuel Cells Using Thermally Catalysed Ti Mesh
,”
J. Appl. Electrochem.
0021-891X,
34
(
9
), pp.
929
933
.
25.
Yang
,
L. X.
,
Allen
,
R. G.
,
Scott
,
K.
,
Christensen
,
P. A.
, and
Roy
,
S.
, 2005, “
A New PtRu Anode Formed by Thermal Decomposition for the Direct Method Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
104
110
.
26.
Shao
,
Z. G.
,
Zhu
,
F.
,
Lin
,
W. F.
,
Christensen
,
P. A.
,
Zhang
,
H.
, and
Yi
,
B.
, 2006, “
Preparation and Characterization of New Anodes Based on Ti Mesh for Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
8
), pp.
A1575
A1583
.
27.
Yang
,
L. X.
,
Allen
,
R. G.
,
Scott
,
K.
,
Christensen
,
P. A.
, and
Roy
,
S.
, 2005, “
A Study of PtRuO2 Catalysts Thermally Formed on Titanium Mesh for Methanol Oxidation
,”
Electrochim. Acta
0013-4686,
50
(
5
), pp.
1217
1223
.
28.
Allen
,
R. G.
,
Lim
,
C.
,
Yang
,
L. X.
,
Scott
,
K.
, and
Roy
,
S.
, 2005, “
Novel Anode Structure for the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
143
(
1–2
), pp.
142
149
.
29.
Briggs
,
D.
, and
Seah
,
M. P.
, 1990,
Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
,
Wiley
,
New York
.
30.
Blume
,
R.
,
Havecker
,
M.
,
Zafeiratos
,
S.
,
Teschner
,
D.
,
Gericke
,
A. K.
,
Schlogl
,
R.
,
Dudin
,
P.
,
Barinov
,
A.
, and
Kiskinova
,
M.
, 2007, “
Oxidation of Methanol on Ru Catalyst: Effect of the Reagents Partial Pressures on the Catalyst Oxidation State and Selectivity
,”
Catal. Today
0920-5861,
124
(
1–2
), pp.
71
79
.
31.
Moulder
,
J. F.
,
Stickle
,
W. F.
,
Sobol
,
P. E.
, and
Bomben
,
K. D.
, 1992,
Handbook of X-Ray Photoelectron Spectroscopy
,
Perkin-Elmer
,
Eden Prairie, MN
.
32.
Shukla
,
A. K.
,
Neergat
,
M.
,
Bera
,
P.
,
Jayaram
,
V.
, and
Hegde
,
M. S.
, 2001, “
An XPS Study on Binary and Ternary Alloys of Transition Metals With Platinized Carbon and Its Bearing Upon Oxygen Electroreduction in Direct Methanol Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
504
(
1
), pp.
111
119
.
33.
da Silva
,
L. A.
,
Alves
,
V. A.
,
de Castro
,
S. C.
, and
Boodts
,
J. F. C.
, 2000, “
XPS Study of the State of Iridium, Platinum, Titanium and Oxygen in Thermally Formed IrO2+TiO2+PtOx Films
,”
Colloids Surf., A
0927-7757,
170
(
2–3
), pp.
119
126
.
34.
Wang
,
Z.
,
Chen
,
G.
,
Xia
,
D.
, and
Zhang
,
L.
, 2008, “
Studies on the Electrocatalytic Properties of PtRu/C–TiO2 Toward the Oxidation of Methanol
,”
J. Alloys Compd.
0925-8388,
450
, pp.
148
151
.
35.
Lin
,
S. D.
,
Hsiao
,
T. C.
,
Chang
,
J. R.
, and
Lin
,
A. S.
, 1999, “
Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells
,”
J. Phys. Chem. B
1089-5647,
103
(
1
), pp.
97
103
.
36.
García
,
B. L.
,
Captain
,
B.
,
Adams
,
R. D.
,
Hungria
,
A. B.
,
Midgley
,
P. A.
,
Thomas
,
J. M.
, and
Weidner
,
J. W.
, 2007, “
Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation
,”
J. Cluster Sci.
1040-7278,
18
(
1
), pp.
121
130
.
37.
Wei
,
Z. D.
, and
Chan
,
S. H.
, 2004, “
Electrochemical Deposition of PtRu on an Uncatalyzed Carbon Electrode for Methanol Electrooxidation
,”
J. Electroanal. Chem.
0022-0728,
569
(
1
), pp.
23
33
.
38.
Umeda
,
M.
,
Kokubo
,
M.
,
Mohamedi
,
M.
, and
Uchida
,
I.
, 2003, “
Porous-Microelectrode Study on Pt/C Catalysts for Methanol Electrooxidation
,”
Electrochim. Acta
0013-4686,
48
(
10
), pp.
1367
1374
.
39.
Jang
,
G. W.
, and
Rajeshwar
,
K.
, 1987, “
Thermolytic Formation of Noble Metals and Their Oxides From Chloride Precursors
,”
J. Electrochem. Soc.
0013-4651,
134
(
7
), pp.
1830
1835
.
40.
Lodi
,
G.
,
Bighi
,
C.
, and
De Asmundis
,
C.
, 1976, “
Deposition and Characterization of RuO2 Films on Various Substrates
,”
Mater. Chem.
0390-6035,
1
(
2
), pp.
177
187
.
41.
Fachinotti
,
E.
,
Guerrini
,
E.
,
Tavares
,
A. C.
, and
Trasatti
,
S.
, 2007, “
Electrocatalysis of H2 Evolution by Thermally Prepared Ruthenium Oxide: Effect of Precursors: Nitrate vs. Chloride
,”
J. Electroanal. Chem.
0022-0728,
600
(
1
), pp.
103
112
.
42.
Shao
,
Z. G.
,
Zhu
,
F.
,
Lin
,
W. F.
,
Christensen
,
P. A.
, and
Zhang
,
H.
, 2006, “
PtRuO2/Ti Anodes With a Varying Pt:Ru Ratio for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
813
819
.
43.
Terezo
,
A. J.
, and
Pereira
,
E. C.
, 1999, “
Preparation and Characterization of Ti/RuO2–Nb2O5 Electrodes Obtained by Polymeric Precursor Method
,”
Electrochim. Acta
0013-4686,
44
(
25
), pp.
4507
4513
.
44.
Lim
,
C.
, and
Wang
,
C. Y. J.
, 2003, “
Development of High-Power Electrodes for a Liquid-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
113
(
1
), pp.
145
150
.
45.
Ren
,
X.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
High Performance Direct Methanol Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
(
1
), pp.
L12
L15
.
46.
Goodenough
,
J. B.
,
Manoharan
,
R.
,
Shukla
,
A. K.
, and
Ramesh
,
K. V.
, 1989, “
Intraalloy Electron Transfer and Catalyst Performance: A Spectroscopic and Electrochemical Study
,”
Chem. Mater.
0897-4756,
1
(
4
), pp.
391
398
.
47.
Iwasita
,
T.
,
Hoster
,
H.
,
John-Anacker
,
A.
,
Lin
,
W. F.
, and
Vielstich
,
W.
, 2000, “
Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution
,”
Langmuir
0743-7463,
16
(
2
), pp.
522
529
.
48.
Gasteiger
,
H. A.
,
Markovic
,
N.
,
Ross
,
P. N.
, Jr.
, and
Cairns
,
E. J.
, 1994, “
Temperature-Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys
,”
J. Electrochem. Soc.
0013-4651,
141
(
7
), pp.
1795
1803
.
49.
de Mishima
,
B. A. L.
,
Mishima
,
H. T.
, and
Castro
,
G.
, 1995, “
Surface Studies of Pt-Ru Electrodeposits on Gold
,”
Electrochim. Acta
0013-4686,
40
(
15
), pp.
2491
2500
.
50.
Arico
,
A. S.
,
Antonucci
,
P. L.
,
Modica
,
E.
,
Baglio
,
V.
,
Kim
,
H.
, and
Antonucci
,
V.
, 2002, “
Effect of Pt-Ru Alloy Composition on High-Temperature Methanol Electrooxidation
,”
Electrochim. Acta
0013-4686,
47
(
22–23
), pp.
3723
3732
.
51.
Loffler
,
M. S.
,
Natter
,
H.
,
Hempelmann
,
R.
, and
Wippermann
,
K.
, 2003, “
Preparation and Characterisation of Pt–Ru Model Electrodes for the Direct Methanol Fuel Cell
,”
Electrochim. Acta
0013-4686,
48
(
20–22
), pp.
3047
3051
.
52.
Watanabe
,
M.
, and
Motoo
,
S.
, 1975, “
Electrocatalysis by Ad-Atoms: Part III. Enhancement of the Oxidation of Carbon Monoxide on Platinum by Ruthenium Ad-Atoms
,”
J. Electroanal. Chem.
0022-0728,
60
(
3
), pp.
275
283
.
53.
Antolini
,
E.
, 2007, “
Platinum-Based Ternary Catalysts for Low Temperature Fuel Cells: Part II. Electrochemical Properties
,”
Appl. Catal., B
0926-3373,
74
(
3–4
), pp.
337
350
.
54.
Dohle
,
H.
,
Divisek
,
J.
, and
Jung
,
R.
, 2000, “
Process Engineering of the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
86
(
1–2
), pp.
469
477
.
55.
Ge
,
J.
, and
Liu
,
H. J.
, 2005, “
Experimental Studies of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
142
(
1–2
), pp.
56
69
.
56.
Scott
,
K.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
, 1999, “
Engineering Aspects of the Direct Methanol Fuel Cell System
,”
J. Power Sources
0378-7753,
79
(
1
), pp.
43
59
.
57.
Gurau
,
B.
, and
Smotkin
,
E. S.
, 2002, “
Methanol Crossover in Direct Methanol Fuel Cells: A Link Between Power and Energy Density
,”
J. Power Sources
0378-7753,
112
(
2
), pp.
339
352
.
58.
Nakagawa
,
N.
, and
Xiu
,
Y.
, 2003, “
Performance of a Direct Methanol Fuel Cell Operated at Atmospheric Pressure
,”
J. Power Sources
0378-7753,
118
(
1–2
), pp.
248
255
.
59.
Surampudi
,
S.
,
Narayanan
,
S. R.
,
Vamos
,
E.
,
Frank
,
H.
,
Halpert
,
G.
,
LaConti
,
A.
,
Kosek
,
J.
,
Surya Prakash
,
G. K.
, and
Olah
,
G. A.
, 1994, “
Advances in Direct Oxidation Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
47
(
3
), pp.
377
385
.
60.
Shukla
,
A. K.
,
Jackson
,
C. L.
,
Scott
,
K.
, and
Raman
,
R. K.
, 2002, “
An Improved-Performance Liquid-Feed Solid-Polymer-Electrolyte Direct Methanol Fuel Cell Operating at Near-Ambient Conditions
,”
Electrochim. Acta
0013-4686,
47
(
21
), pp.
3401
3407
.
You do not currently have access to this content.