Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years. In this work synthesis, electrochemical properties, phase evolution, and microstructure of an all-perovskite electrolyte-supported SOFC based on La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) porous anode, La0.8Sr0.2Ga0.7Mg0.3O2.8 (LSGM-2030) electrolyte, and La0.8Sr0.2MnO3 cathode at intermediate temperatures are studied. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it validates that there is no reaction between LSGM and LSCM at sintering temperature. The characterization study of the synthesized LSGM also indicates that sintering at 1500°C gives higher electrical conductivity compared with the currently published results, while for the pellets sintered at 1400°C and 1450°C the conductivity would be slightly lower. The effects of the firing temperature on the bulk and grain boundary resistivities are also discussed.

1.
Takebe
,
H.
,
Yoshihara
,
N.
, and
Morinaga
,
K.
, 1990, “
Processing of YSZ Films for Solid Oxide Fuel Cell by the Slip Casting
,”
J. Ceram. Soc. Jpn.
,
98
(
2
), pp.
136
143
. 1348-6535
2.
Setoguchi
,
T.
,
Inoue
,
T.
,
Takebe
,
H
,
Eguchi
,
K.
,
Morinaga
,
K.
, and
Arai
,
H.
, 1990, “
Fabrication and Evaluation of Flat Thick Film Type Solid Oxide Fuel Cell
,”
Solid State Ionics
,
37
(
2–3
), pp.
217
221
. 0167-2738
3.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
(
3
), pp.
563
588
.
4.
Ishihara
,
T.
,
Matsuda
,
H.
, and
Takita
,
Y.
, 1994, “
Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor
,”
J. Am. Chem. Soc.
0002-7863,
116
(
9
), pp.
3801
3803
.
5.
Ishihara
,
T.
,
Akbay
,
T.
,
Furutani
,
H.
, and
Takita
,
Y.
, 1998, “
Improved Oxide Ion Conductivity of Co Doped La0.8Sr0.2Ga0.8Mg0.2O3 Perovskite Type Oxide
,”
Solid State Ionics
,
113–115
, pp.
585
591
. 0167-2738
6.
Ishihara
,
T.
,
Kilner
,
J. A.
,
Honda
,
M.
,
Sakai
,
N.
,
Yokokawa
,
H.
, and
Takita
,
Y.
, 1998, “
Oxygen Surface Exchange and Diffusion in LaGaO3 Based Perovskite Type Oxides
,”
Solid State Ionics
,
113–115
, pp.
593
600
. 0167-2738
7.
Ishihara
,
T.
,
Shibayama
,
T.
,
Honda
,
M.
,
Nishiguchi
,
H.
, and
Takita
,
Y.
, 2000, “
Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte II. Improvement of Oxide Ion Conductivity and Power Density by Doping Fe for Ga Site of LaGaO3
,”
J. Electrochem. Soc.
0013-4651,
147
(
4
), pp.
1332
1337
.
8.
Miyazawa
,
T.
,
Hirata
,
K.
,
Komada
,
N.
,
Hosoi
,
K.
,
Shibata
,
M.
,
Yamada
,
M.
,
Yamasaki
,
S.
,
Nishiwaki
,
F.
,
Kano
,
J.
, and
Inagaki
,
T.
, 2006, “
Development of Disc-Type Seal-Less SOFC
,”
Seventh European SOFC Forum
, Lucerne, Switzerland.
9.
Kharton
,
V. V.
,
Marques
,
F. M. B.
, and
Atkinson
,
A.
, 2004, “
Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review
,”
Solid State Ionics
0167-2738,
174
(
1–4
), pp.
135
149
.
10.
Pelosato
,
R.
,
Natali Sora
,
I.
,
Ferrari
,
V.
,
Dotelli
,
G.
, and
Mari
,
C. M.
, 2004, “
Preparation and Characterisation of Supported La0.83Sr0.17Ga0.83Mg0.17O2.83 Thick Films for Application in IT-SOFCs
,”
Solid State Ionics
,
175
(
1–4
), pp.
87
92
. 0167-2738
11.
Feng
,
M.
, and
Goodenough
,
J. B.
, 1995, “
Improved Oxide Ion Electrolytes
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
369
, pp.
333
342
.
12.
Feng
,
M.
, and
Goodenough
,
J. B.
, 1995, “
Perovskites as Oxide-Ion Electrolytes
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
369
, pp.
343
348
.
13.
Feng
,
M.
,
Goodenough
,
J. B.
,
Huang
,
K.
, and
Milliken
,
C.
, 1996, “
Fuel Cells With Doped Lanthanum Gallate Electrolyte
,”
J. Power Sources
0378-7753,
63
(
1
), pp.
47
51
.
14.
Huang
,
P. N.
, and
Petric
,
A.
, 1996, “
Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped With Strontium and Magnesium
,”
J. Electrochem. Soc.
0013-4651,
143
(
5
), pp.
1644
1648
.
15.
Huang
,
K.
,
Feng
,
M.
,
Goodenough
,
J. B.
, and
Schmerling
,
M.
, 1996, “
Characterization of Sr-Doped LaMnO3 and LaCoO3 as Cathode Materials for a Doped LaGaO3 Ceramic Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
143
(
11
), pp.
3630
3636
.
16.
Tao
,
S.
,
Poulsen
,
F. W.
,
Meng
,
G.
, and
Sorensen
,
O. T.
, 2000, “
High-Temperature Stability Study of the Oxygen-Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O3−x
,”
J. Mater. Chem.
0959-9428,
10
(
8
), pp.
1829
1833
.
17.
Kuncewicz-Kupczyk
,
W.
,
Kobertz
,
D.
,
Miller
,
M.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2001, “
Vaporization of Sr- and Mg-Doped Lanthanum Gallate and Implications for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
148
(
6
), pp.
E276
E281
.
18.
Kosacki
,
I.
,
Anderson
,
H. U.
,
Buschow
,
K. H. J.
,
Robert
,
W. C.
,
Merton
,
C. F.
,
Bernard
,
I.
,
Edward
,
J. K.
,
Subhash
,
M.
, and
Patrick
,
V.
, 2001, “
Grain Boundary Effects in Nanocrystalline Mixed Conducting Films
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
,
Oxford
, pp.
3609
3617
.
19.
Kosacki
,
I.
,
Anderson
,
H. U.
,
Mizutani
,
Y.
, and
Ukai
,
K.
, 2002, “
Nonstoichiometry and Electrical Transport in Sc-Doped Zirconia
,”
Solid State Ionics
,
152–153
, pp.
431
438
. 0167-2738
20.
Ghosh
,
A.
,
Sahu
,
A. K.
,
Gulnar
,
A. K.
, and
Suri
,
A. K.
, 2005, “
Synthesis and Characterization of Lanthanum Strontium Manganite
,”
Scr. Mater.
1359-6462,
52
(
12
), pp.
1305
1309
.
21.
Thangadurai
,
V.
, and
Weppner
,
W.
, 2005, “
Studies on Electrical Properties of La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM-SrSn1-xFexO3 (x=0.8;0.9) Composites and Their Chemical Reactivity
,”
Electrochim. Acta
,
50
(
9
), pp.
1871
1877
. 0013-4686
22.
Gomes
,
E.
,
Figueiredo
,
F. M.
, and
Marques
,
F. M. B.
, 2006, “
Mixed Conduction Induced by Grain Boundary Engineering
,”
J. Eur. Ceram. Soc.
,
26
(
14
), pp.
2991
2997
. 0955-2219
23.
Rambabu
,
B.
,
Ghosh
,
S.
,
Zhao
,
W.
, and
Jena
,
H.
, 2006, “
Innovative Processing of Dense LSGM Electrolytes for IT-SOFC’s
,”
J. Power Sources
,
159
(
1
), pp.
21
28
. 0378-7753
24.
Huang
,
K.
,
Tichy
,
R. S.
, and
Goodenough
,
J. B.
, 1998, “
Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties
,”
J. Am. Ceram. Soc.
0002-7820,
81
(
10
), pp.
2565
2575
.
25.
Pelosato
,
R.
,
Sora
,
I. N.
,
Dotelli
,
G.
,
Ruffo
,
R.
, and
Mari
,
C. M.
, 2005, “
Characterization of (1−x) La0.8Sr0.17Ga0.83Mg0.17O2.83-xLa0.8Sr0.2MnO3 (0⇐x⇐1) Composite Cathodes
,”
J. Eur. Ceram. Soc.
,
25
(
12
), pp.
2587
2591
. 0955-2219
26.
Polini
,
R.
,
Pamio
,
A.
, and
Traversa
,
E.
, 2004, “
Effect of Synthetic Route on Sintering Behaviour, Phase Purity and Conductivity of Sr- and Mg-Doped LaGaO3 Perovskites
,”
J. Eur. Ceram. Soc.
0955-2219,
24
(
6
), pp.
1365
1370
.
27.
Datta
,
P.
,
Majewski
,
P.
, and
Aldinger
,
F.
, 2007, “
Synthesis and Microstructural Characterization of Sr- and Mg-Substituted LaGaO3 Solid Electrolyte
,”
Mater. Chem. Phys.
,
102
(
2–3
), pp.
240
244
. 0254-0584
28.
Rozumek
,
M.
,
Majewski
,
P.
, and
Aldinger
,
F.
, 2004, “
Metastable Crystal Structure of Strontium- and Magnesium-Substituted LaGaO3
,”
J. Am. Ceram. Soc.
0002-7820,
87
(
4
), pp.
656
661
.
29.
Datta
,
P.
,
Majewski
,
P.
, and
Aldinger
,
F.
, 2007, “
Synthesis and Characterization of Strontium and Magnesium Substituted Lanthanum Gallate-Nickel Cermet Anode for Solid Oxide Fuel Cells
,”
Mater. Chem. Phys.
,
102
(
2–3
), pp.
125
131
. 0254-0584
30.
Huang
,
K.
,
Feng
,
M.
, and
Goodenough
,
J. B.
, 1996, “
Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-Doped LaGaO3 Perovskite
,”
J. Am. Ceram. Soc.
0002-7820,
79
(
4
), pp.
1100
1104
.
31.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition
,”
Solid State Ionics
0167-2738,
176
(
15–16
), pp.
1341
1350
.
32.
Lu
,
C.
,
An
,
S.
,
Worrell
,
W. L.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
, 2004, “
Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels
,”
Solid State Ionics
,
175
(
1–4
), pp.
47
50
. 0167-2738
33.
Majewski
,
P.
,
Rozumek
,
M.
,
Tas
,
C. A.
, and
Aldinger
,
F.
, 2002, “
Processing of (La,Sr)(Ga,Mg)O3 Solid Electrolyte
,”
J. Electroceram.
,
8
(
1
), pp.
65
73
. 1385-3449
34.
Rozumek
,
M.
,
Majewski
,
P.
,
Sauter
,
L.
, and
Aldinger
,
F.
, 2003, “
Homogeneity Region of Strontium- and Magnesium-Containing LaGaO3 at Temperatures Between 1100° and 1500°C in Air
,”
J. Am. Ceram. Soc.
0002-7820,
86
(
11
), pp.
1940
1946
.
35.
Li
,
Z. -C.
,
Zhang
,
H.
,
Bergman
,
B.
, and
Zou
,
X.
, 2006, “
Synthesis and Characterization of La0.85Sr0.15Ga0.85Mg0.15O3−δ Electrolyte by Steric Entrapment Synthesis Method
,”
J. Eur. Ceram. Soc.
,
26
(
12
), pp.
2357
2364
. 0955-2219
36.
Guo
,
W.
,
Liu
,
J.
, and
Zhang
,
Y.
, 2008, “
Electrical and Stability Performance of Anode-Supported Solid Oxide Fuel Cells With Strontium- and Magnesium-Doped Lanthanum Gallate Thin Electrolyte
,”
Electrochim. Acta
,
53
(
13
), pp.
4420
4427
. 0013-4686
37.
Gomes
,
E.
,
Figueiredo
,
F. M.
, and
Marques
,
F. M. B.
, “
Grain Boundary Fe-Doping Effects in LSGM
,”
Solid State Ionics
, in press. 0378-7753
38.
Huang
,
B.
,
Wang
,
S. R.
,
Liu
,
R. Z.
,
Ye
,
X. F.
,
Nie
,
H. W.
,
Sun
,
X. F.
, and
Wen
,
T. L.
, 2007, “
Performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ Perovskite-Structure Anode Material at Lanthanum Gallate Electrolyte for IT-SOFC Running on Ethanol Fuel
,”
J. Power Sources
,
167
(
1
), pp.
39
46
. 0378-7753
39.
Oncel
,
C.
,
Ozkaya
,
B.
, and
Gulgun
,
M. A.
, 2007, “
X-Ray Single Phase LSGM at 1350°C
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
599
604
. 0955-2219
40.
Kurumada
,
M.
,
Hara
,
H.
,
Munakata
,
F.
, and
Iguchi
,
E.
, 2005, “
Electric Conductions in La0.9Sr0.1GaO3−δ and La0.9Sr0.1Ga0.9Mg0.1O3−δ
,”
Solid State Ionics
0167-2738,
176
(
3–4
), pp.
245
251
.
41.
Haavik
,
C.
,
Ottesen
,
E. M.
,
Nomura
,
K.
,
Kilner
,
J. A.
, and
Norby
,
T.
, 2004, “
Temperature Dependence of Oxygen Ion Transport in Sr+Mg-Substituted LaGaO3 (LSGM) With Varying Grain Sizes
,”
Solid State Ionics
,
174
(
1–4
), pp.
233
243
. 0167-2738
42.
Kharton
,
V. V.
,
Shaula
,
A. L.
,
Vyshatko
,
N. P.
, and
Marques
,
F. M. B.
, 2003, “
Electron-Hole Transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3−δ Electrolyte: Effects of Ceramic Microstructure
,”
Electrochim. Acta
0013-4686,
48
(
13
), pp.
1817
1828
.
43.
Cong
,
L.
,
He
,
T.
,
Ji
,
Y.
,
Guan
,
P.
,
Huang
,
Y.
, and
Su
,
W.
, 2003, “
Synthesis and Characterization of IT-Electrolyte With Perovskite Structure La0.8Sr0.2Ga0.85Mg0.15O3−δ by Glycine-Nitrate Combustion Method
,”
J. Alloys Compd.
0925-8388,
348
(
1–2
), pp.
325
331
.
You do not currently have access to this content.