Sensitivity analysis and design optimization of solid oxide fuel cells are presented. Multispecies diffusion, low speed convection, and chemical kinetics are included in a two-dimensional numerical model, and sensitivity derivatives are computed using both discrete adjoint method and direct differentiation. The implementation of the discrete adjoint method is validated by comparing sensitivity derivatives obtained using the adjoint with results obtained using direct differentiation and finite-difference methods. For optimization, cost functions describing hydrogen concentration along the anode-electrolyte interface, hydrogen concentration at the channel outlet, and standard deviation of temperature inside the anode are considered. Material properties of the anode, operating conditions, and a shape parameter are selected as design variables. The development of an initial design environment to automate the flowfield solution, sensitivity computation, optimization, and mesh movement is also described. Finally, an adjoint-based error correction method is implemented and demonstrated to provide accurate estimations for a desired objective function on a fine mesh by combining information obtained from analysis and adjoint solutions on a coarser one.

1.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulations for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
, pp.
109
122
.
2.
Fiard
,
J. M.
, and
Herbin
,
R.
, 1994, “
Comparison Between Finite Volume and Finite Element Methods for an Elliptic System Arising in Electrochemical Engineering
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
115
, pp.
315
338
.
3.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
4.
Li
,
P. W.
, and
Suzuki
,
K.
, 2004, “
Numerical Modeling and Performance Study of a Tubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
151
(
4
), pp.
A548
A557
.
5.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
6.
Yuan
,
J.
, and
Sunden
,
B.
, 2006, “
Analysis of Chemically Reacting Transport Phenomena in an Anode Duct of Intermediate Temperature SOFCs
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
89
98
.
7.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
8.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
9.
Secanell
,
M.
,
Djilali
,
N.
, and
Suleman
,
A.
, 2006, “
Optimization of a Planar Self-Breathing PEM Fuel Cell Cathode
,” Paper No. AIAA 2006-6917.
10.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Appl. Surf. Sci.
0169-4332,
227
, pp.
56
72
.
11.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Optimization of the Cathode Geometry in Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
5883
5895
.
12.
Newman
,
J. C.
,
Anderson
,
W. K.
, and
Whitfield
,
D. L.
, 1998, “
Multidisciplinary Sensitivity Derivatives Using Complex Variables
,”
Mississippi State University
, Report No. MSSU-COE-ERC-98-08.
13.
Anderson
,
W. K.
,
Newman
,
J. C.
,
Whitfield
,
D. L.
, and
Nielsen
,
E. J.
, 2001, “
Sensitivity Analysis for the Navier-Stokes Equations on Unstructured Meshes Using Complex Variables
,”
AIAA J.
0001-1452,
39
(
1
), pp.
56
63
.
14.
Anderson
,
W. K.
, and
Venkatakrishnan
,
V.
, 1999, “
Aerodynamic Design Optimization on Unstructured Grids With a Continuous Adjoint Formulation
,”
Comput. Fluids
0045-7930,
28
(
4–5
), pp.
443
480
.
15.
Anderson
,
W. K.
, and
Bonhaus
,
D. L.
, 1999, “
Airfoil Design on Unstructured Grids for Turbulent Flows
,”
AIAA J.
0001-1452,
37
(
2
), pp.
185
191
.
16.
Burdyshaw
,
C. E.
,
Anderson
,
W. K.
, 2005, “
A General and Extensible Unstructured Mesh Adjoint Method
,”
AIAA J.
0001-1452,
2
(
10
), pp.
401
413
.
17.
Burdyshaw
,
C. E.
, 2006, “
Achieving Automatic Concurrency Between Computational Field Solvers and Adjoint Sensitivity Codes
,” Ph.D. thesis, University of Tennessee, Chattanooga, TN.
18.
Jameson
,
A.
, 1998, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
0885-7474,
3
, pp.
233
260
.
19.
Jameson
,
A.
,
Alonso
,
J. J.
,
Reuther
,
J.
,
Martinelli
,
L.
, and
Vassberg
,
J. C.
, 1998, “
Aerodynamic Shape Optimization Techniques Based on Control Theory
,” AIAA Paper No. 98-2538.
20.
Mohammadi
,
B.
, 1997, “
Optimal Shape Design, Reverse Mode of Automatic Differentiation and Turbulence
,” AIAA Paper No. 97-0099.
21.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
, 2002, “
Recent Improvements in Aerodynamic Optimization on Unstructured Meshes
,”
AIAA J.
0001-1452,
40
(
6
), pp.
1155
1163
.
22.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
, 1999, “
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier–Stokes Equations
,”
AIAA J.
0001-1452,
37
(
11
), pp.
1411
1419
.
23.
Nielsen
,
E. J.
, 1998, “
Aerodynamic Design Sensitivities on an Unstructured Mesh Using the Navier–Stokes Equations and a Discrete Adjoint Formulation
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, VA.
24.
Nielsen
,
E. J.
, and
Kleb
,
W. L.
, 2005, “
Efficient Construction of Discrete Adjoint Operators on Unstructured Grids by Using Complex Variables
,”
AIAA J.
0001-1452,
44
(
4
), pp.
827
836
.
25.
Park
,
M.
, 2002, “
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
,” AIAA Paper No. 2002-3286.
26.
Venditti
,
D. A.
, 2002, “
Grid Adaptation for Functional Outputs of Compressible Flow Simulations
,” Ph.D. thesis, Massachusetts Institute of Technology, MA.
27.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
, 2003, “
Anisotropic Adaptation for Functional Outputs of Viscous Flow Simulations
,” AIAA Paper No. 2003-3845.
28.
Karman
,
S. L.
, Jr.
,
Anderson
,
W. K.
, and
Sahasrabudhe
,
M.
, 2006, “
Mesh Generation Using Unstructured Computational Meshes and Elliptic Partial Differential Equation Smoothing
,”
AIAA J.
0001-1452,
44
(
6
), pp.
1277
1286
.
29.
Kapadia
,
S.
,
Anderson
,
W. K.
,
Elliott
,
L.
, and
Burdyshaw
,
C.
, 2007, “
Adjoint Method for Solid-Oxide Fuel Cell Simulations
,”
J. Power Sources
0378-7753,
166
, pp.
376
385
.
30.
Nielsen
,
E. J.
, and
Park
,
M. A.
, 2006, “
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
,”
AIAA J.
0001-1452,
44
(
5
), pp.
948
953
.
31.
Bischof
,
C.
,
Carle
,
A.
,
Corliss
,
G.
,
Griewank
,
A.
, and
Hovland
,
P.
, 1992, “
ADIFOR—Generating Derivative Codes From Fortran Programs
,”
Sci. Prog.
1058-9244,
1
, pp.
1
29
.
32.
Bischof
,
C.
,
Roh
,
L.
, and
Mauer-Oats
,
A.
, 1999, “
ADIC: An Extensible Automatic Differentiation Tool for ANSI-C
,”
Softw.: Pract. Exp.
0038-0644,
27
(
12
), pp.
1427
1456
.
33.
Cusdin
,
P. A.
, 2005, “
Automatic Sensitivity Code for Computational Fluid Dynamics
,” Ph.D. thesis, School of Aeronautical Engineering, Queen’s University, Belfast, UK.
34.
Arnost
,
D.
, and
Schneider
,
P.
, 1995, “
Dynamic Transport of Multicomponent Mixtures of Gases in Porous Solids
,”
Chem. Eng. J.
0300-9467,
57
, pp.
91
99
.
35.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 2002,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
36.
Anderson
,
J.
, Jr.
, 1989,
Hypersonic and High Temperature Gas Dynamics
, 1st ed.,
McGraw-Hill
,
New York
.
37.
Tannehill
,
J.
,
Anderson
,
D.
, and
Fletcher
,
R.
, 1997,
Computational Fluid Mechanics and Heat Transfer
(
Series in Computational and Physical Processes in Mechanical and Thermal Sciences
), 1st ed.,
Taylor & Francis
,
London
.
38.
Fletcher
,
R.
, 2001,
Practical Methods of Optimization
, 2nd ed.,
Wiley
,
New York
.
39.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
, 1995,
Practical Optimization
,
Academic
,
New York
.
40.
Arora
,
J. S.
, 1989,
Introduction to Optimum Design
(
McGraw-Hill Series in Mechanical Engineering
),
McGraw-Hill
,
New York
.
41.
Grama
,
A.
,
Gupta
,
A.
,
Karypis
, and
G.
,
Kumar
,
V.
, 2003,
Introduction to Parallel Computing
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
43.
Busby
,
M.
, 1997, “
Steps Toward More Accurate and Efficient Simulations of Reactive Flows
,” Ph.D. thesis, Mississippi State University, MS.
44.
Saad
,
Y.
, and
Schultz
,
M. H.
, 1986, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
856
869
.
You do not currently have access to this content.