A three-dimensional steady-state electrochemical mathematical model is developed where the mass, fluid, and thermal transport processes are considered, as well as the electrochemical reaction phenomena. The influences of the parameters of interest, which include porosity, permeability, and the thickness of the gas diffusion layer, and the inlet gas stoichiometric ratio on the performance of fuel cells are identified. By applying the Powell algorithm, the optimum values of multiple parameters are obtained while optimizing the potential of the electrolyte phase at the membrane/cathode interface at a typical value of the cell voltage. Compared with the reference case, the optimized results, such as the oxygen mole fraction and the local current density distribution, provide useful information for a better design of fuel cells.

1.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003, “
Diffusion Media Materials and Characterization
,”
Handbook of Fuel Cells-fundamentals, Technology and Applications
, Vol.
3
,
Wiley
,
New York
.
2.
Pharoah
,
J. G.
, 2005, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
144
, pp.
77
82
.
3.
Bernardi
,
D. M.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
4.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
5.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
6.
Gurau
,
V.
,
Liu
,
H. T.
,
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
7.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
45
.
8.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
9.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Vanzee
,
J. W.
, 2000, “
Three-Dimensional Numerical Simulation of Straight Channel Pem Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
10.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2003, “
Three-Dimensional Effects of Liquid Water Flooding in the Cathode of a Pem Fuel Cell
,”
J. Power Sources
0378-7753,
115
, pp.
66
80
.
11.
Hwang
,
J. J.
,
Chen
,
C. K.
,
Savinell
,
R. F.
,
Liu
,
C. C.
, and
Wainright
,
J.
, 2004, “
A Three Dimensional Numerical Simulation of the Transport Phenomena in the Cathodic Side of a PEMFC
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
217
224
.
12.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
125
, pp.
40
51
.
13.
Nguyen
,
P. T.
,
Berning
,
T.
, and
Djilali
,
N.
, 2004, “
Computational Model of a Pem Fuel Cell With Serpentine Gas Flow Channels
,”
J. Power Sources
0378-7753,
130
, pp.
149
157
.
14.
Lum
,
K. W.
, and
McGuirk
,
J. J.
, 2005, “
Three-Dimensional Model of a Complete Polymer Electrolyte Membrane Fuel Cell—Model Formulation Validation and Parametric Studies
,”
J. Power Sources
0378-7753,
143
, pp.
103
124
.
15.
Ying
,
W.
,
Sohn
,
Y.-J.
,
Lee
,
W.-Y.
,
Ke
,
J.
, and
Kim
,
C.-S.
, 2005, “
Three-Dimensional Modeling and Experimental Investigation for an Air-Breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
563
571
.
16.
Tuber
,
K.
,
Pocza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent Pem Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
17.
Chen
,
J. H.
,
Matsuura
,
T.
, and
Hori
,
M.
, 2004, “
Novel Gas Diffusion Layer With Water Management Function for PEMFC
,”
J. Power Sources
0378-7753,
131
, pp.
155
161
.
18.
Hottinen
,
T.
,
Noponen
,
M.
,
Mennola
,
T.
,
Himanen
,
O.
,
Mikkola
,
M.
, and
Lund
,
P.
, 2003, “
Effect of Ambient Conditions on Performance and Current Distribution of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
265
271
.
19.
Williams
,
M. V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2004, “
Operation of Nafion-Based PEM Fuel Cells With No External Humidification: Influence of Operating Conditions and Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
135
, pp.
122
134
.
20.
Lee
,
H. K.
,
Park
,
J. H.
,
Kim
,
D. Y.
, and
Lee
,
T. H.
, 2004, “
A Study on the Characteristics of the Diffusion Layer Thickness and Porosity of the PEMFC
,”
J. Power Sources
0378-7753,
131
, pp.
200
206
.
21.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Optimization of the Cathode Geometry in Polymer Electrolyte Membrane Fuel Cells
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
5883
5895
.
22.
Patankar
,
S. V.
, 1980, “
Numerical Heat Transfer and Fluid Flow
,”
Hemisphere
,
New York
.
23.
Pharoah
,
J. G.
, 2005, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
144
, pp.
77
82
.
24.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
25.
Chu
,
H.-S.
,
Yeh
,
C.
, and
Chen
,
F.
, 2003, “
Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
123
, pp.
1
9
.
26.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1986, “
Numerical Recipes: The Art of Scientific Computing
,”
Cambridge University Press
,
Cambridge
, pp.
294
301
.
You do not currently have access to this content.