At the German Aerospace Center (DLR) in Stuttgart, a lightweight stack design for mobile applications was developed in cooperation with the automotive industry (BMW, Munich; Elring-Klinger, Dettingen; Rhodius, Weissenburg). This concept is based on the application of stamped metal sheet bipolar plates into which porous metallic substrate-supported cells (MSCs) are integrated. The paper concentrates on the one hand on the investigation of plasma sprayed button cells with a diameter of 48mm on porous metallic substrates during reduction/oxidation and thermal cycling. On the other hand, another focus lies in the electrochemical testing of short stacks in the cassette arrangement. The microstructure of the cells was characterized by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction, and energy dispersive microanalysis (EDX) before and after operation. The cells and short stacks were electrochemically characterized mainly by long-term measurements (life cycle), by current-voltage measurements, and by impedance spectroscopy. In order to understand the nature of degradation mechanisms, the open-circuit voltages (OCV), the ohmic resistances, and the polarization resistances, during dynamic operation are compared and discussed. In order to distinguish between degradation effects due to the dynamic operation and usual stationary effects, these values are compared to values of noncycled cells. All of the cells investigated were able to withstand ten redox and ten thermal cycles without severe failure. Their redox- and thermal-cycling behavior are strongly dependent on their OCVs, which decrease during cycling. This proves that thermomechanical stresses in the electrolyte layer play a major role for the electrochemical performance of the cells during cycling. The improvement of the electrodes during the first 200h of operation and the ohmic resistance of the cells are not significantly influenced by the cycling. The first four-cell short stack with the cassette arrangement shows promising results with an OCV of 4V and an overall power of 92W at 800°C. The performances of the single cells are in the range of 180220mWcm2. The differences in cell performance can be attributed to different polarization resistances of the cells in the cassettes, which might be caused by a nonuniform gas supply in the short stack.

1.
Zizelman
,
J.
,
DeMinco
,
C.
,
Mukerjee
,
S.
,
Tachtler
,
J.
,
Kammerer
,
J.
, and
Lamp
,
P.
, 2002, “
Auxiliary Power Units With Solid Oxide Fuel Cell Technology for Independent Electric Power Suppy in Passenger Cars
,”
Proc. of 5th European SOFC Forum
,
Huijsmans
,
J.
, ed., European Fuel Cell Forum, Oberrohrdorf, Switzerland,
Bossel, U.
, Oberrohrdorf, Switzerland, Vol.
2
, pp.
1153
1164
.
2.
Lamp
,
P.
,
Tachtler
,
J.
,
Finkenwirth
,
O.
,
Mukerjee
,
S.
, and
Shaffer
,
S.
, 2003, “
Develpoment of an Auxiliary Power Unit With Solid Oxide Fuel Cells for Automotive Applications
,”
Fuel Cells
1615-6846,
3
(
3
), pp.
1
7
.
3.
Stelter
,
M.
,
Reinert
,
A.
,
Mai
,
B. E.
, and
Kuznecov
,
M.
, 2006, “
Engineering Aspects and Hardware Verification of a Volume Producable Solid Oxide Fuel Cell Stack Design for Diesel Auxiliary Power Units
,”
J. Power Sources
0378-7753,
154
(
2
), pp.
448
455
.
4.
Lawrence
,
J.
, and
Boltze
,
M.
, 2006, “
Auxiliary Power Unit Based on a Solid Oxide Fuel Cell and Fuelled With Diesel
,”
J. Power Sources
0378-7753,
154
(
2
), pp.
479
488
.
5.
Cacciola
,
C.
,
Antonucci
,
V.
, and
Freni
,
S.
, 2001, “
Technology Update and New Strategies on Fuel Cells
,”
J. Power Sources
0378-7753,
100
(
1-2
), pp.
67
79
.
6.
Jain
,
S.
,
Chen
,
H. Y.
, and
Schwank
,
J.
, 2006, “
Techno-Economic Analysis of Fuel Cell Auxiliary Power Units as Alternative to Idling
,”
J. Power Sources
0378-7753,
160
(
1
), pp.
474
484
.
7.
Petruzzi
,
L.
,
Cocchi
,
S.
, and
Fineschi
,
F.
, 2003, “
A Global Thermo-Electrochemical Model for SOFC Systems Design and Engineering
,”
J. Power Sources
0378-7753,
118
(
1-2
), pp.
96
107
.
8.
Pfafferodt
,
M.
,
Heidebrecht
,
P.
,
Stelter
,
M.
, and
Sundmacher
,
K.
, 2005, “
Model-Based Prediction of Suitable Operating Range of a SOFC for an Auxiliary Power Unit
,”
J. Power Sources
0378-7753,
149
, pp.
53
62
.
9.
Bujalski
,
W.
,
Paragreen
,
J.
,
Reade
,
G.
,
Pyke
,
S.
, and
Kendall
,
K.
, 2006, “
Cycling Studies of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
157
(
2
), pp.
745
749
.
10.
Hsiao
,
Y. H.
, and
Selman
,
J. R.
, 1997, “
The Degradation of SOFC Electrodes
,”
Solid State Ionics
0167-2738,
98
(
1-2
), pp.
33
38
.
11.
Kilbride
,
I. P.
, 1996, “
Preparation and Properties of Small Diameter Tubular Solid Oxide Fuel Cells for Rapid Start-Up
,”
J. Power Sources
0378-7753,
61
(
1-2
), pp.
167
171
.
12.
Jung
,
H. Y.
,
Choi
,
S.-H.
,
Kim
,
H.
,
Son
,
J.-W.
,
Kim
,
J.
,
Lee
,
H.-W.
, and
Lee
,
J.-H.
, 2006, “
Fabrication and Performance Evaluation of 3-Cell SOFC Stack Based on Planar 10cm×10cm Anode-Supported Cells
,”
J. Power Sources
0378-7753,
159
(
1
), pp.
478
483
.
13.
Matus
,
Y. B.
,
De Jonghe
,
L. C.
,
Jacobson
,
C. P.
, and
Visco
,
S. J.
, 2005, “
Metal-Supported Solid Oxide Fuel Cell Membranes for Rapid Thermal Cycling
,”
Solid State Ionics
0167-2738,
176
(
5-6
), pp.
443
449
.
14.
Molinelli
,
M.
,
Larrain
,
D.
,
Autissier
,
N.
,
Ihringer
,
R.
,
Sfeir
,
J.
,
Badel
,
N.
,
Bucheli
,
O.
, and
Van Herle
,
J. V.
, 2006, “
Dynamic Behavior of SOFC Short Stacks
,”
J. Power Sources
0378-7753,
154
(
2
), pp.
394
403
.
15.
Waldbillig
,
D.
,
Wood
,
A.
, and
Ivey
,
D. G.
, 2005, “
Thermal Analysis of the Cyclic Reduction and Oxidation Behavior of SOFC Anodes
,”
Solid State Ionics
0167-2738,
176
(
9-10
), pp.
847
859
.
16.
Waldbillig
,
D.
,
Wood
,
A.
, and
Ivey
,
D. G.
, 2005, “
Electrochemical and Microstructural Characterization of the Redox Tolerance of Solid Oxide Fuel Cell Anodes
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
206
215
.
17.
Malzbender
,
J.
,
Wessel
,
E.
, and
Steinbrech
,
R. W.
, 2005, “
Reduction and Re-Oxidation of Anodes for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
176
(
29-30
), pp.
2201
2203
.
18.
Kim
,
S.-D.
,
Moon
,
H.
,
Hyun
,
S.-H.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H.-W.
, 2006, “
Performance and Durability of Ni-Coated YSZ Anodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
177
(
9-10
), pp.
931
938
.
19.
Weber
,
A.
, and
Ivers-Tiffée
,
E.
, 2004, “
Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications
,”
J. Power Sources
0378-7753,
127
(
1-2
), pp.
273
283
.
20.
Van Herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N. M.
,
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
K.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
, 2000, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
0167-2738,
132
(
3-4
), pp.
333
342
.
21.
Lang
,
M.
,
Henne
,
R.
,
Schaper
,
S.
, and
Schiller
,
G.
, 2001, “
Development and Characterisation of Vacuum Plasma Sprayed Thin Film SOFCs
,”
J. Therm. Spray Technol.
1059-9630,
10
(
4
), pp.
618
625
.
22.
Franco
,
T.
,
Henne
,
R.
,
Lang
,
M.
,
Metzger
,
P.
,
Schiller
,
G.
, and
Szabo
,
P.
, 2003, “
Metallic Components for a Plasma Sprayed Thin-Film SOFC Concept
,”
Proc. of 8th Int. Symposium on SOFC (SOFC VIII)
,
Singhal
,
S. C.
, and
Dokiya
,
M.
, eds.,
Electrochemical Society
, Pennington, NJ, pp.
923
934
.
23.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
,
Vinke
,
I. C.
, and
Stöver
,
D.
, 2003, “
Microstructural and Electrochemical Characterisation of LSF-Based Cathodes for Anode-Supported Solid Oxide Fuel Cells
,”
Proc. of 8th Int. Symposium on SOFC (SOFC VIII)
,
Singhal
,
S. C.
, and
Dokiya
,
M.
, eds.,
Electrochemical Society
, Pennington, NJ, pp.
525
532
.
24.
Wang
,
W.
, and
Jang
,
S. P.
, 2004, “
Effect of Polarization on the Electrode Behaviour and Microstructure of (La,Sr)MnO3 Electrodes of Solid Oxide Fuel Cells
,”
J. Solid State Electrochem.
1432-8488,
8
, pp.
914
922
.
25.
Tu
,
H.
, and
Stimming
,
U.
, 2004, “
Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
127
(
1-2
), pp.
284
293
.
26.
Finkenwirth
,
O.
, 2005, “
Einfluss des Fertigungsprozesses auf die mechanischen und elektrochemischen Eigenschaften plasmagespritzter Festelektrolyt-Brennstoffzellen
,”
Fortschritt-Berichte VDI
, Reihe 6, Nr. 531,
VDI-Verlag
, Düsseldorf, pp.
66
67
.
27.
Männer
,
R.
,
Ivers-Tiffée
,
E.
, and
Wersing
,
W.
, 1991, “
Characterization of YSZ Electrolyte Materials With Various Yttria Contents
,”
2nd Int. Symp. on SOFC
,
Grosz
,
F.
,
Zegers
,
P.
,
Singhal
,
S. C.
, and
Yamamoto
,
O.
, eds., Commission of the European Communities, Brussels, pp.
715
725
.
28.
Franco
,
T.
,
HoshiarDin
,
Z.
,
Szabo
,
P.
,
Lang
,
M.
, and
Schiller
,
G.
, 2007, “
Plasma Sprayed Diffusion Barrier Layers Based on Doped Perovskite-Type LaCrO3 at Substrate-Anode Interface of SOFC
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, to be published.
You do not currently have access to this content.