The aim of this work is to build up a complete dynamical model of a molten carbonate fuel cell (MCFC) stack, describing both the thermo-fluid-dynamical and the electrochemical phenomena involved, i.e., both slow and (relatively) fast dynamics. Following a first-principle approach, a set of differential and algebraic equations is written, based on mass, momentum, energy, and charge balance referred to as small control volumes inside a cell. The outlined two-three-dimensional description takes into account the strong point-to-point anode and cathode reaction coupling due to gas crossflow. Simulations (carried out after suitable thermodynamical and electrochemical parameter tuning) highlight, for instance, the presence of dynamics, linked to the electrochemical behavior, with time constants on the order of a second; besides, rather fair matching to data which can be found in the literature is achieved, in terms of external potential difference and of electric power production. The obtained numerical results, therefore, support model correctness and reliability. This is useful in view of model-based cell operation analysis and control, both in stationary and in transient conditions.

1.
O’Shea
,
T. P.
, and
J. Leo
,
A.
, 1994, “
Santa Clara Demonstration Project 2-MW Carbonate Fuel Cell Power Plant
,”
Proceedings of the 1994 29th Intersociety Energy Conversion Engineering Conference
, Monterey, CA,
2
, pp.
817
822
.
2.
Andrews
,
C. J.
, and
Weiner
,
S. A.
, 2004, “
Visions of a Hydrogen Future
,”
IEEE Power & Energy Magazine
,
2
(
2
), pp.
26
34
.
3.
Kordesch
,
K.
, and
Simader
,
G.
, 1996,
Fuel Cells and Their Applications
,
VCH
, Federal Republic of Germany.
4.
Kowalenko
,
K.
, 2004, “
Getting a Handle on Hydrogen
,
IEEE - The Institute
,
28
(
3
), pp.
14
18
.
5.
Gurney
,
J. H.
, 2004, “
Building a Case for the Hydrogen Economy
,”
IEEE Power & Energy Magazine
,
2
(
2
), pp.
35
39
.
6.
Ronchetti
,
M.
, and
Iacobazzi
,
A.
, 2002, “
CELLE A COMBUSTIBILE: Stato di Sviluppo e Prospettive della Tecnologia
,” Grande Progetto Idrogeno e Celle a Combustibile, ENEA, Italy.
7.
Bittanti
,
S.
,
Canevese
,
S.
,
De Marco
,
A.
,
Errigo
,
A.
, and
Prandoni
,
V.
, 2005, “
MCFC Electrochemistry Modeling
,”
Proceedings of the 7th International Molten Salt Symposium
, Toulouse, France.
8.
Ghezel-Ayagh
,
H.
,
Daly
,
J. M.
, and
Wang
,
Z.-H.
, 2003, “
Advances in Direct Fuel Cell/Gas Turbine Power Plants
,”
Proceedings FuelCell Energy
,
ASME
,
New York
.
9.
Scagliotti
,
M.
, 2003, “
Celle a Combustibile e Impianti Ibridi
,”
AEI
,
90
, pp.
32
37
.
10.
Scagliotti
,
M.
,
Strobino
,
G.
,
Araldi
,
P.
, and
Savoldelli
,
P.
, 1999, “
Sperimentazione di una Soluzione Innovativa per la Configurazione di Stack MCFC
,” Giornata di studio sulle Pile a Combustibile, AIM, Milan, Italy.
11.
Lukas
,
M.
,
Ghezel-Ayagh
,
H.
, and
Lee
,
K. Y.
, 1999, “
Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell Power Plant
,”
IEEE Trans. Energy Convers.
0885-8969,
14
(
4
), pp.
1651
1657
.
12.
Lukas
,
M.
,
Ghezel-Ayagh
,
H.
, and
Lee
,
K. Y.
, 2000, “
Modeling, Simulation and Control of Direct Reforming Molten Carbonate Fuel Cell Power Plant
,”
Proceedings IFAC Symp. Power Plants and Power Systems Control
, Bruxelles, pp.
127
132
.
13.
Lukas
,
M.
, and
Ghezel-Ayagh
,
H.
, 2001, “
An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack
,”
IEEE Trans. Energy Convers.
0885-8969,
16
(
3
), pp.
289
295
.
14.
Van Duijn
,
C. J.
, and
Fehribach
,
J. D.
, 1993, “
Analysis for a Molten Carbonate Fuel Cell
,”
Electron. J. Differ. Equations
1550-6150,
1993
(
06
), pp.
1
25
.
15.
He
,
W.
, 1994, “
The Dynamic Performance of a Molten Carbonate Fuel Cell in Power-Generation System
,”
J. Power Sources
0378-7753,
52
, pp.
179
184
.
16.
He
,
W.
, 2000, “
Dynamic Simulations of Molten Carbonate Fuel-Cell Systems
,” Ph.D. thesis, Delft University, The Netherlands.
17.
He
,
W.
, and
Chen
,
Q.
, 1998, “
Three-Dimensional Simulation of a Molten Carbonate Fuel Cell Stack under Transient Conditions
,”
J. Power Sources
0378-7753,
73
, pp.
182
192
.
18.
Giner
,
J.
, and
Hunter
,
C.
, 1969, “
The Mechanism of Operation of the Teflon-Bounded Gas Diffusion Electrode: A Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
116
, pp.
1124
1130
.
19.
Bennion
,
D. N.
, and
Tobias
,
C. W.
, 1966, “
Current Distribution at a Gas-Electrode-Electrolyte Interface (Parts I and II)
,”
J. Electrochem. Soc.
0013-4651,
113
(
6
), pp.
589
599
.
20.
Yuh
,
C. Y.
, and
Selman
,
J. R.
, 1984, “
Polarization of the Molten Carbonate Fuel Cell Anode, and Cathode
,”
J. Electrochem. Soc.
0013-4651,
131
, pp.
2062
2069
.
21.
Elam
,
M.
,
Peled
,
E.
, and
Gileadi
,
E.
, 1983, “
Cyclic Voltametry in Solutions of Aluminum Bromide and kBr in Aromatics Hydrocarbons
,”
J. Electrochem. Soc.
0013-4651,
130
, pp.
585
590
.
22.
Canevese
,
S.
,
De Marco
,
A.
,
Moretti
,
G.
, and
Prandoni
,
V.
, 2004, “
Un Modello di Pila a Combustibile a Carbonati Fusi
,” Automazione e Strumentazione, pp.
77
84
.
23.
Bittanti
,
S.
,
Canevese
,
S.
,
De Marco
,
A.
,
Moretti
,
G.
, and
Prandoni
,
V.
, 2005, “
Molten Carbonate Fuel Cell Modelling
,”
Proceedings 17th IFAC World Congress
, Prague, Czech Republic.
24.
Hamann
,
C. H.
,
Hamnett
,
A.
, and
Vielstich
,
W.
, 1998,
Electrochemistry
,
Wiley-VCH
, Berlin, Germany.
25.
Goodridge
,
F.
, and
Scott
,
K.
,
Electrochemical Process Engineering
,
Wiley
, New York.
26.
Prandoni
,
V.
, and
De Marco
,
A.
, 2003, “
Modelli Matematici Dinamici delle Reazioni Elettrochimiche, Catalitiche e Trasferimenti di Massa in Celle a Combustibile
,” Milan, Italy, CESI Internal Report No. A3/021830.
27.
Errigo
,
A.
, 2004, “
Modellistica delle Reazioni Elettrochimiche e del Trasporto Ionico in Celle a Combustibile
,” Master thesis, Politecnico di Milano, Milan, Italy.
28.
Bittanti
,
S.
,
Canevese
,
S.
,
De Marco
,
A.
,
Errigo
,
A.
, and
Prandoni
,
V.
, 2005, “
MCFC Electrochemistry Modelling
,”
Proceedings 7th International Molten Salt Symposium
, Toulouse, France.
29.
Canevese
,
S.
, 2005, “
Modelling and Control of Fuel Cells
,” Ph.D. thesis, Politecnico di Milano, Milan, Italy.
30.
Moretti
,
G.
, 2003, “
Molten Carbonate Fuel Cell: Modellistica e Simulazione
,” Master thesis, Politecnico di Milano, Milan, Italy.
31.
Xu
,
J.
, and
Froment
,
G. F.
, 1989, “
Methane Steam Reforming, Methanation, and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
0001-1541,
35
(
1
).
32.
Dell’Oca
,
M.
, 1998–1999, “
Ambiente di Simulazione e Modelli Matematici di Processi Termoidraulici
,” Master thesis, Politecnico di Milano, Milan, Italy.
33.
Cattaneo
,
C.
,
De Marco
,
A.
, and
Bolzern
,
P.
, 2001, “
Metodologia di Sviluppo di Modelli per la Simulazione di Processi Termoidraulici in Ambito MatLab Simulink
,” Politecnico di Milano, Milan, Italy, Internal Report No. 94.
34.
Goodrige
,
F.
,
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 1980,
Electrochemical Methods
,
Wiley
, New York.
35.
Ang
,
P. G. P.
, and
Sammels
,
A. F.
, 1980, “
Influence of Electrolyte Composition Electrode Kinetics in the Molten Carbonate Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
127
(
6
), pp.
1287
1293
.
36.
Will
,
F. G.
, and
Ben Daniel
,
D. J.
, 1969, “
Significance of Electrolyte Films for Performance of Porous Hydrogen Elecrodes
,”
J. Electrochem. Soc.
0013-4651,
119
(
7
), pp.
933
937
.
37.
Burshtein
,
R. Chs.
,
Markin
,
V. S.
,
Pshenichnikov
,
A. G.
,
Chismadgev
,
V. A.
, and
Chirkov
,
Y. G.
, 1964, “
Carbon Monoxide Electroxidation on Porous Pt-Ru Electrodes in Sulphuric Acid
,”
Electrochim. Acta
0013-4686,
9
, pp.
773
787
.
38.
Giuffrida
,
G.
, 2005, “
Simulazione di Una Molten Carbonate Fuel Cell: Integrazione di un Modello Fluidodinamico Tridimensionale e di un Modello Elettrochimico
,” Master thesis, Politecnico di Milano, Milan, Italy.
39.
Leva
,
A.
, and
Maffezzoni
,
C.
, 2004, “
Modelling of Power Plants
,
Thermal Power Plant Simulation and Control
,
D.
Flynn
, ed., Vol.
2
, IEEE Power & Energy Series,
IEEE
, New York, pp.
17
60
.
40.
Eitelberg
,
E.
, 1983, “
A Simple A2-Stable Numerical Method for State Space Models With Stiff Oscillations
,”
Math. Comput. Simul.
0378-4754,
25
(
4
), pp.
346
355
.
41.
EG & G Services, Parsons Inc.
, 2000,
Fuel Cell Handbook
, 5th ed., U.S. Dept. of Energy, Office of Fossil Energy,
National Energy Technology Laboratory
, Morgantown, West Virginia, WV.
You do not currently have access to this content.