Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Novel composite electrolyte Sm0.2Ce0.8O1.9–Pr2NiO4 (SDC–PNO) for solid oxide fuel cells (SOFCs) was prepared. The effects of sintering temperature on the performance of SDC–PNO composite electrolyte were studied. X-ray diffraction (XRD) analysis confirms that the composite samples sintering at different temperatures contain two pure phases corresponding to SDC and PNO, respectively. It indicates that there is no interfacial reaction between Sm0.2Ce0.8O1.9 and Pr2NiO4, and the composite electrolyte keeps regular grain boundaries after long-term operation. The results of scanning electron microscopy (SEM) show that a dense structure can be formed after sintering at 1250 °C. The electrical properties were tested in air by electrochemical impedance spectroscopy technique in the temperature range of 400–800 °C. Results show that an appropriate increase of the sintering temperature can effectively increase the conductivity of SDC–PNO composite electrolyte, and the maximum conductivity of 0.102 S/cm can be obtained in the sample sintered at 1250 °C and tested at 800 °C. In summary, the electrical conductivity of Sm0.2Ce0.8O1.9 can be significantly increased by adding Pr2NiO4, and SDC–PNO composite electrolyte is a promising electrolyte for solid oxide fuel cells.

References

1.
Wang
,
Q.
,
Fan
,
H.
,
Xiao
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Applications and Recent Advances of Rare Earth in Solid Oxide Fuel Cells
,”
J. Rare Earths
,
40
(
11
), pp.
1668
1681
.
2.
Ibrahim
,
A. H.
,
Abbas
,
Y. M.
,
Ayoub
,
H. A.
,
Ali
,
M. H.
, and
Aldoori
,
M.
,
2023
, “
Novel Synthesis of Stabilized Bi1−xyGdxDyyO1.5 Solid Electrolytes With Enhanced Conductivity for Intermediate Temperature Solid Oxide Fuel Cells (SOFCs)
,”
J. Rare Earths
.
3.
Uecker
,
J.
,
Unachukwu
,
I. D.
,
Vibhu
,
V.
,
Vinke
,
I. C.
,
Eichel
,
R. A.
, and
(Bert) de Haart
,
L. G. J.
,
2023
, “
Performance, Electrochemical Process Analysis and Degradation of Gadolinium Doped Ceria as Fuel Electrode Material for Solid Oxide Electrolysis Cells
,”
Electrochim. Acta
,
452
(
6
), p.
142320
.
4.
Niazmand
,
M.
,
Maghsoudipour
,
A.
,
Alizadeh
,
M.
,
Khakpour
,
Z.
, and
Kariminejad
,
A.
,
2022
, “
Effect of Dip Coating Parameters on Microstructure and Thickness of 8YSZ Electrolyte Coated on NiO-YSZ by Sol-Gel Process for SOFCs Applications
,”
Ceram. Int.
,
48
(
11
), pp.
16091
16098
.
5.
Zhang
,
Y.
,
Gao
,
J.
,
Peng
,
D.
,
Guangyao
,
M.
, and
Liu
,
X.
,
2004
, “
Dip-Coating Thin Yttria-Stabilized Zirconia Films for Solid Oxide Fuel Cell Applications
,”
Ceram. Int.
,
30
(
6
), pp.
1049
1053
.
6.
Hanif
,
M. B.
,
Rauf
,
S.
,
Mosiałek
,
M.
,
Kashif
,
K.
,
Vilma
,
K.
,
Algimantas
,
K.
,
Tomas
,
Š.
, et al
,
2023
, “
MO-Doped BaCe0.9Y0.1O3−δ Proton-Conducting Electrolyte at Intermediate Temperature SOFCs. Part I: Microstructure and Electrochemical Properties
,”
Int. J. Hydrogen Energy
,
48
(
96
), pp.
37532
37549
.
7.
Li
,
J.
,
Yousaf
,
M.
,
Akbar
,
M.
,
Asma
,
N.
,
Hu
,
E.
,
Yousaf Shah
,
M. A. K.
,
Qadeer
,
A. S.
,
Naveed
,
M.
, and
Lu
,
Y.
,
2023
, “
High-Performing and Stable Semiconductor Yttrium-Doped Gadolinium Electrolyte for Low-Temperature Solid Oxide Fuel Cells
,”
Chem. Commun.
,
59
(
41
), pp.
6223
6226
.
8.
Inaba
,
H.
, and
Tagawa
,
H.
,
1996
, “
Ceria-Based Solid Electrolytes
,”
Solid State Ionics
,
83
(
1–2
), pp.
1
16
.
9.
Wang
,
S. Q.
,
Geng
,
J. H.
,
Zhao
,
X. X.
, and
Xing
,
Y. Z.
,
2023
, “
Elevated Sintering Capability and Electrical Conductivity of Fe2O3-Doped Ce0.8Sm0.1Nd0.1O2−δ as an Electrolyte in IT-SOFCs
,”
Mater. Chem. Phys.
,
309
(
11
), p.
128345
.
10.
Choudhary
,
B.
, and
Anwar
,
S.
,
2023
, “
Fabrication of Fuel Electrode Supported Proton Conducting SOFC Via EPD of La2Ce2O7 Electrolyte and Its Performance Evaluation
,”
Solid State Ionics
,
401
, p.
116356
.
11.
Alizadeh
,
S. M.
,
Mohebbi
,
H.
,
Golmohammad
,
M.
,
Sharifi
,
O.
, and
Farzaneh
,
F.
,
2023
, “
Revisiting Fe-Doped 8YSZ as the Electrolyte of SOFC—From Sintering to Electrochemical Performance
,”
J. Alloys Compd.
,
938
, p.
168553
.
12.
Bai
,
J.
,
Han
,
Z.
,
Zhou
,
D.
,
Zhu
,
X. F.
,
Wang
,
N.
,
Chen
,
R.
,
He
,
J.
, and
Yan
,
W. F.
,
2023
, “
Preparation of Pr2NiO4 + δ–La0.6Sr0.4CoO3−δ as a High-Performance Cathode Material for SOFC by an Impregnation Method
,”
Int. J. Hydrogen Energy
,
48
(
15
), pp.
6076
6087
.
13.
Vafaeenezhad
,
S.
,
Morales-Zapata
,
M. A.
,
Hanifi
,
A. R.
,
Laguna-Bercero
,
M. A.
,
Larrea
,
Á.
,
Sarkar
,
P.
, and
Etsell
,
T. H.
,
2022
, “
Stability of Infiltrated Cathodes Using Pr2NiO4 + δ Precursor for Low-Temperature Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
47
(
82
), pp.
35081
35095
.
14.
Saher
,
S.
,
Tan
,
C. Y.
,
Ramesh
,
S.
,
Kar
,
Y. B.
,
Ong
,
B. H.
,
Kim
,
H. M.
, and
Al-Furjan
,
M. S. H.
,
2024
, “
A Way to Limit the Long-Term Degradation of Solid Oxide Fuel Cell Cathode by Decorating the Surface With K2NiF4-Structure Pr4Ni3O10 + δ Phase
,”
J. Power Sources
,
592
, p.
233899
.
15.
Rao
,
Y.
,
Wang
,
Z.
,
Zhong
,
W.
,
Peng
,
R.
, and
Lu
,
Y.
,
2012
, “
Novel Ni–Ba1 + xZr0.3Ce0.5Y0.2O3−δ Hydrogen Electrodes as Effective Reduction Barriers for Reversible Solid Oxide Cells Based on Doped Ceria Electrolyte Thin Film
,”
J. Power Sources
,
199
, pp.
142
145
.
16.
Kim
,
S. G.
,
Yoon
,
S. P.
,
Nam
,
S. W.
,
Hyun
,
S. H.
, and
Hong
,
S. A.
,
2022
, “
Fabrication and Characterization of a YSZ/YDC Composite Electrolyte by a Sol–Gel Coating Method
,”
J. Power Sources
,
110
(
1
), pp.
222
228
.
17.
Li
,
Z.
,
Shan
,
P.
,
Tang
,
W.
,
Ni
,
Q.
,
Qian
,
B.
,
Wang
,
S.
,
Zheng
,
Y.
,
Ge
,
L.
,
Chen
,
H.
, and
Zhang
,
C.
,
2023
, “
Enhancing the Catalytic Activity and Stability of the Pr2NiO4 + δ Ruddlesden−Popper Perovskite Air Electrode for High-Temperature Steam Electrolysis With Barium Doping
,”
J. Alloys Compd.
,
932
, p.
167646
.
18.
Seyednezhad
,
M.
,
Rajabi
,
A.
,
Muchtar
,
A.
,
Somalu
,
M. R.
, and
Ooshaksaraei
,
P.
,
2017
, “
Effect of Compaction Pressure on the Performance of a Non-symmetrical NiO–SDC/SDC Composite Anode Fabricated by Conventional Furnace
,”
J. Asian Ceram. Soc.
,
5
(
2
), pp.
77
81
.
19.
Geofrey
,
S. M.
, and
Daud
,
L. S.
,
2023
, “
Perspective and Control of Cation Interdiffusion and Interface Reactions in Solid Oxide Fuel Cells (SOFCs)
,”
Mater. Sci. Eng. B
,
292
(
6
), p.
116415
.
20.
Song
,
Z.
,
Yi
,
L.
,
Li
,
C.
,
Yang
,
S.
, and
Jiang
,
H.
,
2017
, “
Synthesis & Characterization of Ti and Fe Co-doped Ta2O5 Based Solid Electrolytes for SOFC
,”
Solid State Ionics
,
312
, pp.
106
111
.
21.
Pandey
,
R.
,
Singh
,
P.
,
Singh
,
A. K.
, and
Singh
,
P.
,
2022
, “
Polyol-Mediated Synthesis of La0.9Sr0.1Ga0.8Mg0.2O2.85–Ce0.85Sm0.15O1.925 Composite Electrolyte for IT-SOFCs
,”
Mater. Today: Proc.
,
49
(
8
), pp.
3071
3075
.
22.
Hu
,
M.
,
Chen
,
M.
,
Wang
,
Y.
,
Zhao
,
H.
,
Xu
,
J.
, and
Tang
,
X.
,
2023
, “
A p-n Heterostructure Composite of NaCrO2 and CeO2 for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Alloys Compd.
,
962
, p.
171169
.
23.
Fu
,
Z.
,
Wang
,
S.
,
Zheng
,
Y.
,
Pan
,
W.
,
Liu
,
J.
,
Wang
,
H.
, and
Guan
,
Q.
,
2022
, “
Co-sintering Synthesis of Yb3+ and Sm3+ Co-doped CeO2/NiO Composite as a Solid Electrolyte and Its Electrochemical Properties
,”
Int. J. Electrochem. Sci.
,
17
(
5
), p.
220565
.
24.
Xing
,
Y.
,
Rauf
,
S.
,
Cai
,
H.
,
Tayyab
,
Z.
,
Wang
,
B.
,
Xia
,
C.
,
Wu
,
Y.
, and
Zhu
,
B.
,
2024
, “
Designing p-n Heterostructure of LSCF-CeO2 Material for Ionic Transportation as an Electrolyte for Semiconductor Ion Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
50
, pp.
428
440
.
25.
Akbar
,
M.
,
Qu
,
G.
,
Yang
,
W.
,
Gao
,
J.
,
Yousaf
,
M.
,
Mushtaq
,
N.
,
Wang
,
X.
,
Dong
,
W.
,
Wang
,
B.
, and
Xia
,
C.
,
2022
, “
Fast Ionic Conduction and Rectification Effect of NaCo0.5Fe0.5O2–CeO2 Nanoscale Heterostructure for LT-SOFC Electrolyte Application
,”
J. Alloys Compd.
,
924
, p.
166565
.
26.
Ding
,
H.
,
Wu
,
T.
,
Zhao
,
S.
,
Sun
,
H.
,
Li
,
J.
,
Guo
,
X.
, and
Wang
,
P.
,
2022
, “
Grain Boundary Conduction Behaviors of Ultra-Fine Grained CeO2/BaCeO3 Based Electrolytes
,”
Ceram. Int.
,
48
(
17
), pp.
25314
25321
.
27.
Meng
,
Y.
,
Akbar
,
M.
,
Gao
,
J.
,
Singh
,
M.
,
Chiu
,
T. W.
,
Wang
,
B.
,
Xia
,
C.
, and
Fan
,
L.
,
2024
, “
Superionic Conduction of Self-assembled Heterostructural LSCrF–CeO2 Electrolyte for Solid Oxide Fuel Cell at 375–550 °C
,”
Appl. Surf. Sci.
,
645
, p.
158832
.
28.
Kim
,
J. W.
,
Bae
,
K.
,
Kim
,
H. J.
,
Son
,
J. W.
,
Kim
,
N.
,
Stenfelt
,
S.
,
Prinz
,
F. B.
, and
Shim
,
J. H.
,
2018
, “
Three-Dimensional Thermal Stress Analysis of the Re-oxidized Ni-YSZ Anode Functional Layer in Solid Oxide Fuel Cells
,”
J. Alloys Compd.
,
752
, pp.
148
154
.
29.
Haberko
,
K.
,
Jasinski
,
M.
,
Pasierb
,
P.
,
Radecka
,
M.
, and
Rekas
,
M.
,
2010
, “
Structural and Electrical Properties of Ni–YSZ Cermet Materials
,”
J. Power Sources
,
195
(
17
), pp.
5527
5533
.
30.
Zhao
,
X.
,
Wang
,
F.
,
Hang
,
J.
, and
Liu
,
T.
,
2012
, “
Determining the Mechanical Properties of Solid Oxide Fuel Cell by an Improved Work of Indentation Approach
,”
J. Power Sources
,
201
, pp.
231
235
.
31.
Błaszczak
,
P.
,
Ducka
,
A.
,
Wolanin
,
B.
,
Matlak
,
K.
,
Machowski
,
G.
,
Prześniak-Welenc
,
M.
,
Wang
,
S. F.
,
Bochentyn
,
B.
, and
Jasiński
,
P.
,
2023
, “
Fabrication of Wormhole-Like YSZ and Ni-YSZ by the Novel Soft-Hard Template CTAB/NaCl-Assisted Route. Suppressing Ni Coalescence in SOFC
,”
J. Eur. Ceram. Soc.
,
43
(
2
), pp.
438
451
.
32.
Chi
,
H.
,
Xiao
,
L.
,
Deng
,
T.
,
Pan
,
B.
, and
Yuan
,
J.
,
2024
, “
Modeling and Characterization of Sintered YSZ/NiO Porous Electrode Structural Properties Using Coarse-Graining Molecular Dynamics Method
,”
Ceram. Int.
,
50
(
14
), pp.
26205
26219
.
You do not currently have access to this content.