Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Accurately estimating the state of health (SOH) of lithium-ion batteries is important for improving battery safety performance. The single time-domain feature extraction is hard to efficiently extract discriminative features from strongly nonlinear coupled data, leading to difficulties in accurately estimating the battery SOH. To this end, this paper proposes a multi-scale frequency domain feature and time-domain feature fusion method for SOH estimation of lithium-ion batteries based on the transformer model. First, the voltage, current, temperature, and time information of the battery are extracted as time-domain features; second, the battery signal is processed by a multi-scale filter bank based on Mel-frequency cepstral coefficients (MFCCs) to obtain the multi-scale frequency-domain features; then, a parallel focusing network (PFN) is designed to fuze the time-domain features with the frequency-domain features, which yields low-coupling complementary discriminative features; finally, constructing the SOH estimation mechanism based on the transformer deep network model. The algorithm is validated by NASA and Oxford datasets, and the mean absolute error (MAE) and root-mean-square error (RMSE) are as low as 0.06% and 0.23%, respectively.

References

1.
Wang
,
Q.
,
Wang
,
Z.
,
Zhang
,
L.
,
Liu
,
P.
, and
Zhou
,
L.
,
2023
, “
A Battery Capacity Estimation Framework Combining Hybrid Deep Neural Network and Regional Capacity Calculation Based on Real-World Operating Data
,”
IEEE Trans. Ind. Electron.
,
70
(
8
), pp.
8499
8508
.
2.
Yu
,
Q.
,
Nie
,
Y.
,
Liu
,
S.
,
Li
,
J.
, and
Tang
,
A.
,
2023
, “
State of Health Estimation Method for Lithium-Ion Batteries Based on Multiple Dynamic Operating Conditions
,”
J. Power Sources
,
582
, p.
233541
.
3.
Zhang
,
L.
,
Hu
,
X.
,
Wang
,
Z.
,
Sun
,
F.
,
Deng
,
J.
, and
Dorrell
,
D. G.
,
2018
, “
Multiobjective Optimal Sizing of Hybrid Energy Storage System for Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
67
(
2
), pp.
1027
1035
.
4.
Che
,
Y.
,
Foley
,
A.
,
El-Gindy
,
M.
,
Lin
,
X.
,
Hu
,
X.
, and
Pecht
,
M.
,
2021
, “
Joint Estimation of Inconsistency and State of Health for Series Battery Packs
,”
Autom. Innov.
,
4
, pp.
103
116
.
5.
Ding
,
P.
,
Liu
,
X.
,
Li
,
H.
,
Huang
,
Z.
,
Zhang
,
K.
,
Shao
,
L.
, and
Abedinia
,
O.
,
2021
, “
Useful Life Prediction Based on Wavelet Packet Decomposition and Two-Dimensional Convolutional Neural Network for Lithium-Ion Batteries
,”
Renew. Sustain. Energy Rev.
,
148
, p.
111287
.
6.
Zhang
,
W.
,
Li
,
T.
,
Wu
,
W.
,
Ouyang
,
N.
, and
Huang
,
G.
,
2023
, “
Data-Driven State of Health Estimation in Retired Battery Based on Low and Medium-Frequency Electrochemical Impedance Spectroscopy
,”
Measurement
,
211
, p.
112597
.
7.
Zhang
,
S.
,
Guo
,
X.
,
Dou
,
X.
, and
Zhang
,
X.
,
2020
, “
A Rapid Online Calculation Method for State of Health of Lithium-Ion Battery Based on Coulomb Counting Method and Differential Voltage Analysis
,”
J. Power Sources
,
479
, p.
228740
.
8.
Kong
,
X.
,
Plett
,
G. L.
,
Scott Trimboli
,
M.
,
Zhang
,
Z.
,
Qiao
,
D.
,
Zhao
,
T.
, and
Zheng
,
Y.
,
2020
, “
Pseudo-Two-Dimensional Model and Impedance Diagnosis of Micro Internal Short Circuit in Lithium-Ion Cells
,”
J. Energy Storage
,
27
, p.
101085
.
9.
Shah
,
A.
,
Shah
,
K.
,
Shah
,
C.
, and
Shah
,
M.
,
2022
, “
State of Charge, Remaining Useful Life and Knee Point Estimation Based on Artificial Intelligence and Machine Learning in Lithium-Ion EV Batteries: A Comprehensive Review
,”
Renew. Energy Focus
,
42
, pp.
146
164
.
10.
Vidal
,
C.
,
Malysz
,
P.
,
Kollmeyer
,
P.
, and
Emadi
,
A.
,
2020
, “
Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art
,”
IEEE Access
,
8
, pp.
52796
52814
.
11.
Watrin
,
N.
,
Blunier
,
B.
, and
Miraoui
,
A.
,
2012
, “
Review of Adaptive Systems for Lithium Batteries State-of-Charge and State-of-Health Estimation
,”
2012 IEEE Transportation Electrification Conference and Expo (ITEC)
,
Dearborn, MI
,
June 18–20
, pp.
1
6
.
12.
Antón
,
J. Á.
,
Nieto
,
P. G.
,
de Cos Juez
,
F. J.
,
Lasheras
,
F. S.
,
Vega
,
M. G.
, and
Gutiérrez
,
M. R.
,
2013
, “
Battery State-of-Charge Estimator Using the SVM Technique
,”
Appl. Math. Model.
,
37
(
9
), pp.
6244
6253
. Battery State-of-Charge Estimator Using the SVM Technique
13.
Liu
,
Z.
,
Sun
,
G.
,
Bu
,
S.
,
Han
,
J.
,
Tang
,
X.
, and
Pecht
,
M.
,
2017
, “
Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
,”
IEEE Trans. Instrum. Meas.
,
66
(
2
), pp.
280
293
.
14.
Hu
,
C.
,
Jain
,
G.
,
Zhang
,
P.
,
Schmidt
,
C.
,
Gomadam
,
P.
, and
Gorka
,
T.
,
2014
, “
Data-Driven Method Based on Particle Swarm Optimization and K-Nearest Neighbor Regression for Estimating Capacity of Lithium-Ion Battery
,”
Appl. Energy
,
129
, pp.
49
55
.
15.
Bian
,
X.
,
Wei
,
Z.
,
Li
,
W.
,
Pou
,
J.
,
Sauer
,
D. U.
, and
Liu
,
L.
,
2022
, “
State-of-Health Estimation of Lithium-Ion Batteries by Fusing an Open Circuit Voltage Model and Incremental Capacity Analysis
,”
IEEE Trans. Power Electron.
,
37
(
2
), pp.
2226
2236
.
16.
Cadini
,
F.
,
Sbarufatti
,
C.
,
Cancelliere
,
F.
, and
Giglio
,
M.
,
2019
, “
State-of-Life Prognosis and Diagnosis of Lithium-Ion Batteries by Data-Driven Particle Filters
,”
Appl. Energy
,
235
, pp.
661
672
.
17.
Wu
,
J.
,
Cui
,
X.
,
Meng
,
J.
,
Peng
,
J.
, and
Lin
,
M.
,
2024
, “
Data-Driven Transfer-Stacking-Based State of Health Estimation for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
71
(
1
), pp.
604
614
.
18.
Song
,
K.
,
Hu
,
D.
,
Tong
,
Y.
, and
Yue
,
X.
,
2023
, “
Remaining Life Prediction of Lithium-Ion Batteries Based on Health Management: A Review
,”
J. Energy Storage
,
57
, p.
106193
.
19.
Lai
,
C.-M.
, and
Kuo
,
T.-J.
,
2022
, “
Available Capacity Computation Model Based on Long Short-Term Memory Recurrent Neural Network for Gelled-Electrolyte Batteries in Golf Carts
,”
IEEE Access
,
10
, pp.
54433
54444
.
20.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
21.
Deng
,
Z.
,
Lin
,
X.
,
Cai
,
J.
, and
Hu
,
X.
,
2022
, “
Battery Health Estimation With Degradation Pattern Recognition and Transfer Learning
,”
J. Power Sources
,
525
, p.
231027
.
22.
Sheng
,
H.
,
Liu
,
X.
,
Bai
,
L.
,
Dong
,
H.
, and
Cheng
,
Y.
,
2021
, “
Small Sample State of Health Estimation Based on Weighted Gaussian Process Regression
,”
J. Energy Storage
,
41
, p.
102816
.
23.
Shu
,
X.
,
Shen
,
J.
,
Li
,
G.
,
Zhang
,
Y.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2021
, “
A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs With Long Short-Term Memory Network and Transfer Learning
,”
IEEE Trans. Transp. Electrification
,
7
(
4
), pp.
2238
2248
.
24.
Ye
,
Z.
, and
Yu
,
J.
,
2022
, “
State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
,”
IEEE Trans. Power Electron.
,
37
(
3
), pp.
3528
3543
.
25.
Pan
,
D.
,
Li
,
H.
, and
Wang
,
S.
,
2022
, “
Transfer Learning-Based Hybrid Remaining Useful Life Prediction for Lithium-Ion Batteries Under Different Stresses
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
10
.
26.
Wang
,
Y.-X.
,
Chen
,
Z.
, and
Zhang
,
W.
,
2022
, “
Lithium-Ion Battery State-of-Charge Estimation for Small Target Sample Sets Using the Improved GRU-Based Transfer Learning
,”
Energy
,
244
, p.
123178
.
27.
Xu
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2023
, “
A Hybrid Approach to Predict Battery Health Combined With Attention-Based Transformer and Online Correction
,”
J. Energy Storage
,
65
, p.
107365
.
28.
Bai
,
T.
, and
Wang
,
H.
,
2023
, “
Convolutional Transformer-Based Multiview Information Perception Framework for Lithium-Ion Battery State-of-Health Estimation
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
12
.
29.
Zou
,
Y.
,
Lin
,
Z.
,
Li
,
D.
, and
Liu
,
Z.
,
2023
, “
Advancements in Artificial Neural Networks for Health Management of Energy Storage Lithium-Ion Batteries: A Comprehensive Review
,”
J. Energy Storage
,
73
, p.
109069
.
30.
He
,
Y.
,
Chen
,
Y.
,
Chen
,
N.
,
Xie
,
Y.
,
Wang
,
H.
,
Huang
,
W.
,
Zhao
,
X.
, and
Yang
,
C.
,
2024
, “
State of Health Estimation of Lithium-Ion Battery Aging Process Based on Time-Frequency Fusion Characteristics
,”
J. Power Sources
,
596
, p.
234002
.
31.
Wei
,
Y.
, and
Wu
,
D.
,
2024
, “
State of Health and Remaining Useful Life Prediction of Lithium-Ion Batteries With Conditional Graph Convolutional Network
,”
Expert Syst. Appl.
,
238
, p.
122041
.
32.
Fasahat
,
M.
, and
Manthouri
,
M.
,
2020
, “
State of Charge Estimation of Lithium-Ion Batteries Using Hybrid Autoencoder and Long Short Term Memory Neural Networks
,”
J. Power Sources
,
469
, p.
228375
.
33.
Amogne
,
Z. E.
,
Wang
,
F.-K.
, and
Chou
,
J.-H.
,
2023
, “
Transfer Learning Based on Transferability Measures for State of Health Prediction of Lithium-Ion Batteries
,”
Batteries
,
9
(
5
), p.
280
.
34.
Saha
,
B.
, and
Goebel
,
K.
,
2007
,
Battery Data Set
,
NASA AMES Prognostics Data Repository
,
Moffett Field, CA
.
35.
Birkl
,
C.
,
2017
,
Oxford Battery Degradation Dataset 1
,
University of Oxford
,
Oxford
.
You do not currently have access to this content.