Abstract

The severe corrosion of carbon supports in harsh fuel cell conditions has attracted the development of ceramic-based catalyst supports. Platinum nanoparticles supported on the carbon nanodots (CNDs)-titania (TiO2) composite were synthesized in three steps: Firstly, an inorganic support, titania (TiO2) was synthesized by a hydrolysis method. Secondly, the (CNDs-titania) nanocomposite support was prepared by sonicating pre-synthesized carbon nanodots (CNDs) and TiO2 in equal volumes of ethylene glycol/water solution. Lastly, nanosized Pt particles were deposited onto the CNDs-titania composite by a polyol method to form a platinum/(CNDs-titania nanocatalyst. X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and X-ray difractommetry (XRD) were used to study surface morphology of the synthesized materials. Platinum loading onto the (CNDs-titania) composite support was quantified by ICP-OES. The electrooxidation of alcohol fuels was investigated in acidic electrolytes using chronoamperometric and voltammetric techniques. It was noted that the addition of TiO2 increases electroactivity of the nanocatalysts. The platinum/(CNDs-titania) nanocatalyst exhibited superior electroactivity during methanol and ethanol electrooxidation compared to the platinum/CNDs and Pt/C benchmark standards. Chronoamperometry (CA) curves showed that the platinum/(CNDs-titania) nanocatalyst exhibited outstanding anti-poisoning properties relative to the platinum/CNDs and commercial Pt/C nanocatalysts.

References

1.
Charoen
,
K.
,
Prapainainar
,
C.
,
Sureeyatanapas
,
P.
,
Suwannaphisit
,
T.
,
Wongamornpitak
,
K.
,
Kongkachuichay
,
P.
,
Holmes
,
S. M.
, and
Prapainainar
,
P.
,
2017
, “
Application of Response Surface Methodology to Optimize Direct Alcohol Fuel Cell Power Density for Greener Energy Production
,”
J. Clean. Prod.
,
142
(
3
), pp.
1309
1320
. 10.1016/j.jclepro.2016.09.059
2.
Huang
,
C.
,
Lin
,
J.
,
Pan
,
W.
,
Shih
,
C.
,
Liu
,
Y.
, and
Jessie
,
S.
,
2016
, “
Alkaline Direct Ethanol Fuel Cell Performance Using Alkali-Impregnated Polyvinyl Alcohol/Functionalized Carbon Nano-Tube Solid Electrolytes
,”
J. Power Sources
,
303
, pp.
267
277
. 10.1016/j.jpowsour.2015.10.108
3.
Zhu
,
L. D.
,
Zhao
,
T. S.
,
Xu
,
J. B.
, and
Liang
,
Z. X.
,
2009
, “
Preparation and Characterization of Carbon-Supported sub-Monolayer Palladium Decorated Gold Nanoparticles for the Electro-Oxidation of Ethanol in Alkaline Media
,”
J. Power Sources
,
187
(
1
), pp.
80
84
. 10.1016/j.jpowsour.2008.10.089
4.
Tapan
,
N. A.
,
2007
, “
A Mechanistic Approach to Elucidate Ethanol Electro-Oxidation
,”
Turkish J. Chem.
,
31
, pp.
427
443
.
5.
Lamy
,
C.
,
Coutanceau
,
C.
, and
Leger
,
J. M.
,
2009
, “The Direct Ethanol Fuel Cell: A Challenge to Convert Bioethanol Cleanly Into Electric Energy,”
Catalysis for Sustainable Energy Production
,
P.
Barbaro
and
C.
Bianchini
, ed.,
Wiley-VCH Verlag GmbH & Co
,
Weinheim
, pp.
1
42
.
6.
Dicks
,
A. L.
,
2006
, “
The Role of Carbon in Fuel Cells
,”
J. Power Sources
,
156
(
2
), pp.
128
141
. 10.1016/j.jpowsour.2006.02.054
7.
Castanheira
,
L.
,
Silva
,
W. O.
,
Lima
,
F. H. B.
,
Crisci
,
A.
,
Dubau
,
L.
, and
Maillard
,
F.
,
2015
, “
Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere
,”
ACS Catal.
,
5
(
4
), pp.
2184
2194
. 10.1021/cs501973j
8.
Roen
,
L. M.
,
Paik
,
C. H.
, and
Jarvi
,
T. D.
,
2004
, “
Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes
,”
Electrochem. Solid-State Lett.
,
7
(
1
), p.
A19
. 10.1149/1.1630412
9.
Schlögl
,
K.
,
Mayrhofer
,
K. J. J.
,
Hanzlik
,
M.
, and
Arenz
,
M.
,
2011
, “
Identical-Location TEM Investigations of Pt/C Electrocatalyst Degradation at Elevated Temperatures
,”
J. Electroanal. Chem.
,
662
(
2
), pp.
355
360
. 10.1016/j.jelechem.2011.09.003
10.
Ocampo
,
A. L.
,
Jiang
,
Q.
,
Ma
,
Z.
,
Varela
,
J. R.
, and
De Gyves
,
J.
,
2014
, “
The Effect of TiO2 on the Catalytic Activity of a PtRu/C Catalyst for Methanol Oxidation
,”
Electrocatalysis
,
5
(
4
), pp.
387
395
. 10.1007/s12678-014-0203-4
11.
Meenakshi
,
S.
,
Nishanth
,
K. G.
,
Sridhar
,
P.
, and
Pitchumani
,
S.
,
2014
, “
Spillover Effect Induced Pt-TiO2/C as Ethanol Tolerant Oxygen Reduction Reaction Catalyst for Direct Ethanol Fuel Cells
,”
Electrochim. Acta
,
135
, pp.
52
59
. 10.1016/j.electacta.2014.04.142
12.
Ruiz-Camacho
,
B.
,
Martínez-Álvarez
,
O.
,
Rodríguez-Santoyo
,
H. H.
, and
Granados-Alejo
,
V.
,
2014
, “
Pt/C and Pt/TiO2-C Electrocatalysts Prepared by Chemical Vapor Deposition With High Tolerance to Alcohols in Oxygen Reduction Reaction
,”
J. Electroanal. Chem.
,
725
, pp.
19
24
. 10.1016/j.jelechem.2014.04.019
13.
Unmüssig 1
,
T.
,
Melke
,
J.
, and
Fischer
,
A.
,
2019
, “
Synthesis of Pt@TiO2 Nanocomposite Electrocatalysts for Enhanced Methanol Oxidation by Hydrophobic Nanoreactor Templating
,”
Phys. Chem. Chem. Phys.
,
21
(
25
), pp.
13555
13568
. 10.1039/C9CP00502A
14.
Odetola
,
C.
,
Trevani
,
L.
, and
Easton
,
E. B.
,
2015
, “
Enhanced Activity and Stability of Pt/TiO2/Carbon Fuel Cell Electrocatalyst Prepared Using a Glucose Modifier
,”
J. Power Sources
,
294
, pp.
254
263
. 10.1016/j.jpowsour.2015.06.066
15.
Yang
,
F.
,
Ma
,
L.
,
Gan
,
M.
,
Zhang
,
J.
,
Yan
,
J.
,
Huang
,
H.
,
Yu
,
L.
,
Li
,
Y.
,
Ge
,
C.
, and
Hu
,
H.
,
2015
, “
Polyaniline-functionalized TiO2–C Supported Pt Catalyst for Methanol Electro-Oxidation
,”
Synth. Met.
,
205
, pp.
23
31
. 10.1016/j.synthmet.2015.03.017
16.
Jiang
,
Z. Z.
,
Wang
,
Z. B.
,
Chu
,
Y. Y.
,
Gu
,
D. M.
, and
Yin
,
G. P.
,
2015
, “
Carbon Riveted Microcapsule Pt/MWCNTs-TiO2 Catalyst Prepared by in Situ Carbonized Glucose With Ultrahigh Stability for Proton Exchange Membrane Fuel Cell
,”
Energy Environ. Sci.
,
4
(
7
), pp.
2558
2566
. 10.1039/c1ee01091c
17.
Zhang
,
J.
,
Tu
,
J. P.
,
Du
,
G. H.
,
Dong
,
Z. M.
,
Su
,
Q. M.
,
Xie
,
D.
, and
Wang
,
X. L.
,
2013
, “
Pt Supported Self-Assembled Nest-Like-Porous WO3 Hierarchical Microspheres as Electrocatalyst for Methanol Oxidation
,”
Electrochim. Acta
,
88
, pp.
107
111
. 10.1016/j.electacta.2012.10.060
18.
Georgieva
,
J.
,
Sotiropoulos
,
S.
,
Valova
,
E.
,
Armyanov
,
S.
, and
Karanasios
,
N.
,
2014
, “
Methanol Oxidation and Photo-Oxidation at Pt/WO3 Electrocatalysts on Graphite Substrates
,”
J. Electroanal. Chem.
,
727
, pp.
135
140
. 10.1016/j.jelechem.2014.06.011
19.
Hernández-Pichardo
,
M. L.
,
González-Huerta
,
R. G.
,
Del Angel
,
P.
,
Tufiño-Velazquez
,
M.
, and
Lartundo
,
L.
,
2015
, “
The Role of the WO3 Nanostructures in the Oxygen Reduction Reaction and PEM Fuel Cell Performance on WO3-Pt/C Electrocatalysts
,”
Int. J. Hydrogen Energy
,
40
(
48
), pp.
17371
17379
. 10.1016/j.ijhydene.2015.06.165
20.
Wu
,
M.
,
Han
,
M.
,
Li
,
M.
,
Li
,
Y.
,
Zeng
,
J.
, and
Liao
,
S.
,
2014
, “
Preparation and Characterizations of Platinum Electrocatalysts Supported on Thermally Treated CeO2-C Composite Support for Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
139
, pp.
308
314
. 10.1016/j.electacta.2014.07.029
21.
Ghouri
,
Z. K.
,
Barakat
,
N. A. M.
,
Kim
,
H. Y.
,
Park
,
M.
,
Khalil
,
K. A.
,
El-Newehy
,
M. H.
, and
Al-Deyab
,
S. S.
,
2016
, “
Nano-Engineered ZnO/CeO2 Dots@CNFs for Fuel Cell Application
,”
Arab. J. Chem.
,
9
(
2
), pp.
219
228
. 10.1016/j.arabjc.2015.05.024
22.
Ghouri
,
Z. K.
,
Barakat
,
N. A. M.
,
Obaid
,
M.
,
Lee
,
J. H.
, and
Kim
,
H. Y.
,
2015
, “
Co/CeO2-Decorated Carbon Nanofibers as Effective non-Precious Electro-Catalyst for Fuel Cells Application in Alkaline Medium
,”
Ceram. Int.
,
41
(
2
), pp.
2271
2278
. 10.1016/j.ceramint.2014.10.031
23.
Naeem
,
R.
,
Ahmed
,
R.
, and
Ansari
,
M. S.
,
2014
, “
TiO2 and Al2O3 Promoted Pt/C Nanocomposites as low Temperature Fuel Cell Catalysts for Electro Oxidation of Methanol in Acidic Media
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
60
, pp.
12031
12038
. 10.1088/1757-899X/60/1/012031
24.
Gharibi
,
H.
,
Sadeghi
,
S.
, and
Golmohammadi
,
F.
,
2016
, “
Electrooxidation of Ethanol on Highly Active and Stable Carbon Supported PtSnO2 and Its Application in Passive Direct Ethanol Fuel Cell: Effect of Tin Oxide Synthesis Method
,”
Electrochim. Acta
,
190
, pp.
1100
1112
. 10.1016/j.electacta.2015.12.208
25.
De
,
A.
,
Datta
,
J.
,
Haldar
,
I.
, and
Biswas
,
M.
,
2016
, “
Catalytic Intervention of MoO3 Toward Ethanol Oxidation on PtPd Nanoparticles Decorated MoO3–Polypyrrole Composite Support
,”
ACS Appl. Mater. Interfaces
,
8
(
42
), pp.
28574
28584
. 10.1021/acsami.6b07455
26.
Geppert
,
T. N.
,
Bosund
,
M.
,
Putkonen
,
M.
,
Stühmeier
,
B. M.
,
Pasanen
,
A. T.
,
Heikkilä
,
P.
,
Gasteiger
,
H. A.
, and
El-Sayed
,
H. A.
,
2020
, “
HOR Activity of Pt-TiO2-Y at Unconventionally High Potentials Explained: The Influence of SMSI on the Electrochemical Behavior of Pt
,”
J. Electrochem. Soc.
,
167
(
8
), p.
084517
. 10.1149/1945-7111/ab90ae
27.
Silva
,
J. C. M.
,
Buzzo
,
G. S.
, and
De Souza
,
R. F. B.
,
2015
, “
Enhanced Electrooxidation of Ethanol Using Pd/C + TiO2 Electrocatalysts in Alkaline Media
,”
Electrocatalysis
,
6
(
1
), pp.
86
91
. 10.1007/s12678-014-0224-z
28.
Devi
,
R. S.
,
Venckatesh
,
D. R.
, and
Sivaraj
,
D. R.
,
2014
, “
Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique
,”
Int. J. Innov. Res. Sci. Eng. Technol.
,
3
(
08
), pp.
15206
15211
. 10.15680/IJIRSET.2014.0308020
29.
Falaras
,
P.
, and
Xagas
,
P.
,
2002
, “
Roughness and Fractality of Nanostructured TiO2 Films Prepared via Sol-Gel Technique
,”
Mater. Sci.
,
37
(
18
), pp.
3855
3860
. 10.1023/A:1019686902277
30.
Shen
,
P. S.
,
Tseng
,
C. M.
,
Kuo
,
T. C.
,
Shih
,
C. K.
,
Li
,
M. H.
, and
Chen
,
P.
,
2015
, “
Microwave-Assisted Synthesis of Titanium Dioxide Nanocrystalline for Efficient Dye-Sensitized and Perovskite Solar Cells
,”
Sol. Energy
,
120
, pp.
345
356
. 10.1016/j.solener.2015.07.036
31.
Li
,
W.
,
Zhao
,
Y.
,
Yuan
,
S.
,
Shi
,
L.
,
Wang
,
Z.
,
Fang
,
J.
, and
Zhang
,
M.
,
2012
, “
Synthesis and Characterization of Highly Dispersed TiO2 Nanocrystal Colloids by Microwave-Assisted Hydrothermal Method
,”
J. Mater. Sci.
,
47
(
23
), pp.
7999
8006
. 10.1007/s10853-012-6689-3
32.
Padmamalini
,
N.
, and
Ambujam
,
K.
,
2016
, “
Structural and Dielectric Properties of ZrO2–TiO2–V2O5 Nanocomposite Prepared by CO-Precipitation Calcination Method
,”
Mater. Sci. Semicond. Process.
,
41
, pp.
246
251
. 10.1016/j.mssp.2015.09.009
33.
Zhang
,
X.
,
Sun
,
Y.
,
Cui
,
X.
, and
Jiang
,
Z.
,
2012
, “
Carbon-Incorporated TiO2 Microspheres: Facile Flame Assisted Hydrolysis of Tetrabutyl Orthotitanate and Photocatalytic Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1356
1365
. 10.1016/j.ijhydene.2011.09.133
34.
Liu
,
J.
,
Hu
,
Y.
,
Gu
,
F.
, and
Li
,
C.
,
2011
, “
Large-Scale Synthesis of Hollow Titania Spheres via Flame
,”
Particuology
,
9
(
6
), pp.
632
636
. 10.1016/j.partic.2010.12.004
35.
Piccirillo
,
C.
,
Denis
,
C. J.
,
Pullar
,
R. C.
,
Binions
,
R.
,
Parkin
,
I. P.
,
Darr
,
J. A.
, and
Castro
,
P. M. L.
,
2017
, “
Aerosol Assisted Chemical Vapour Deposition of Hydroxyapatite-Embedded Titanium Dioxide Composite Thin Films
,”
J. Photochem. Photobiol. A Chem.
,
332
, pp.
45
53
. 10.1016/j.jphotochem.2016.08.010
36.
Gwebu
,
S. S.
,
Nomngongo
,
P. N.
,
Mashazi
,
P. N.
,
Nyokong
,
T.
, and
Maxakato
,
N. W.
,
2017
, “
Platinum Nanoparticles Supported on Carbon Nanodots as Anode Catalysts for Direct Alcohol Fuel Cells
,”
Int. J. Electrochem. Sci.
,
12
(
7
), pp.
6365
6378
. 10.20964/2017.07.09
37.
Teliz
,
E.
,
Díaz
,
V.
,
Faccio
,
R.
,
Mombrú
,
W.
, and
Zinola
,
C. F.
,
2011
, “
The Electrochemical Development of Pt(111) Stepped Surfaces and Its Influence on Methanol Electrooxidation
,”
Int. J. Electrochem.
,
1
, pp.
1
9
. 10.4061/2011/289032
38.
Martin
,
L. G.
,
Green
,
I.
,
Wang
,
X.
,
Pasupathi
,
S.
, and
Pollet
,
B. G.
,
2013
, “
Pt-Sn/C as a Possible Methanol-Tolerant Cathode Catalyst for DMFC
,”
Electrocatalysis
,
4
(
3
), pp.
144
153
. 10.1007/s12678-013-0131-8
39.
Krittayavathananon
,
A.
,
Duangdangchote
,
S.
,
Pannopard
,
P.
,
Chanlek
,
N.
,
Sathyamoorthi
,
S.
,
Limtrakul
,
J.
, and
Sawangphruk
,
M.
,
2020
, “
Elucidating the Unexpected Electrocatalytic Activity of Nanoscale PdO Layers on Pd Electrocatalysts Towards Ethanol Oxidation in a Basic Solution
,”
Sustain. Energy Fuels
,
4
(
3
), pp.
1118
1125
. 10.1039/C9SE00848A
40.
Hofstead-Duffy
,
A. M.
,
Chen
,
D. J.
,
Sun
,
S. G.
, and
Tong
,
Y. J.
,
2012
, “
Origin of the Current Peak of Negative Scan in the Cyclic Voltammetry of Methanol Electro-Oxidation on Pt-Based Electrocatalysts: A Revisit to the Current Ratio Criterion
,”
J. Mater. Chem.
,
22
(
11
), pp.
5205
5210
. 10.1039/c2jm15426a
41.
Chung
,
D. Y.
,
Lee
,
K. J.
, and
Sung
,
Y. E.
,
2016
, “
Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation
,”
J. Phys. Chem. C
,
120
(
17
), pp.
9028
9035
. 10.1021/acs.jpcc.5b12303
42.
Perez
,
J.
,
Paganin
,
V. A.
, and
Antolini
,
E.
,
2011
, “
Particle Size Effect for Ethanol Electro-Oxidation on Pt/C Catalysts in Half-Cell and in a Single Direct Ethanol Fuel Cell
,”
J. Electroanal. Chem.
,
654
(
1–2
), pp.
108
115
. 10.1016/j.jelechem.2011.01.013
43.
Nguyen
,
T. G. H.
,
Pham
,
T. V. A.
,
Phuong
,
T. X.
,
Lam
,
T. X. B.
,
Tran
,
V. M.
, and
Nguyen
,
T. P. T.
,
2013
, “
Nano-Pt/C Electrocatalysts: Synthesis and Activity for Alcohol Oxidation
,”
Ad. Nat. Sci. Nanosci. Nanotechnol.
,
4
, p.
35008
. 10.1088/2043-6262/4/3/035008
44.
Jing
,
M.
,
Jiang
,
L.
,
Yi
,
B.
, and
Sun
,
G.
,
2013
, “
Comparative Study of Methanol Adsorption and Electro-Oxidation on Carbon-Supported Platinum in Acidic and Alkaline Electrolytes
,”
J. Electroanal. Chem.
,
688
, pp.
172
179
. 10.1016/j.jelechem.2012.10.028
45.
Abdullah
,
M.
,
Kamarudin
,
S. K.
, and
Shyuan
,
L. K.
,
2016
, “
TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-Based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel
,”
Nanoscale Res. Lett.
,
11
(
1
), pp.
1
18
. 10.1186/s11671-016-1587-2
46.
Wen
,
C.
,
Wei
,
Y.
,
Tang
,
D.
,
Sa
,
B.
,
Zhang
,
T.
, and
Chen
,
C.
,
2017
, “
Improving the Electrocatalytic Properties of Pd-Based Catalyst for Direct Alcohol Fuel Cells : Effect of Solid Solution
,”
Sci. Rep.
,
7
, pp.
4907/1
11
. 10.1038/s41598-017-05323-y
47.
Purgato
,
F. L. S.
,
Olivi
,
P.
,
Léger
,
J. M.
,
de Andrade
,
A. R.
,
Tremiliosi-Filho
,
G.
,
Gonzalez
,
E. R.
,
May
,
C.
, and
Kokoh
,
K. B.
,
2009
, “
Activity of Platinum-tin Catalysts Prepared by the Pechini-Adams Method for the Electrooxidation of Ethanol
,”
J. Electroanal. Chem.
,
628
(
1–2
), pp.
81
89
. 10.1016/j.jelechem.2009.01.010
You do not currently have access to this content.