Abstract

Density functional theory has been used to investigate 19 CaxSn1−x structures (six bulk materials and 13 alloys) as potential battery anodes. Of the alloys, we have found four stable phases (x = 0.25, 0.5, 0.625, and 0.75) and three metastable phases (two at x = 0.5 and one at x = 0.75). For the (meta)stable phases, we compare quantities such as the elastic moduli (bulk (K), shear (G), and Young’s (E)), Poisson’s ratio (ν) and the Pugh ratio (γ), the latter two being metrics for ductility. Nearly all of the alloys exhibit a steady increase in G (from 21.6 GPa to 25.3 GPa) and E (56.1 GPa to 59.1 GPa). K ranges from 25.7 GPa to 46.3 GPa across the same concentration window. For bulk Sn, the ν and γ values are close to the ductile/brittle boundary, followed by an increase in ductility to the peak value at x = 0.25 (ν = 0.298 and γ = 2.14), beyond which both quantities decrease reaching a minimum value at x = 0.75 (ν = 0.168 and γ = 1.17). The Debye temperature (θD) and minimum thermal conductivity (kmin) of each compound were also calculated, following a trend that is identical to the shear modulus. We have found that for stable/metastable compositions of CaxSn1−x, those sharing the same chemical composition (stoichiometry) also share remarkably similar material properties, indicating that such materials would be advantageous for uses in battery anodes.

References

1.
Whittingham
,
M. S.
,
1976
, “
Electrical Energy Storage and Intercalation Chemistry
,”
Science
,
192
(
4244
), pp.
1126
1127
.
2.
Mizushima
,
K.
,
Jones
,
P.
,
Wiseman
,
P.
, and
Goodenough
,
J.
,
1980
, “
Lixcoo2 (0<x<1): A New Cathode Material for Batteries of High Energy Density
,”
Mater. Res. Bull.
,
15
(
6
), pp.
783
789
.
3.
Van Noorden
,
R.
,
2014
, “
The Rechargeable Revolution: A Better Battery
,”
Nature
,
507
(
7490
), pp.
26
28
.
4.
Nagy
,
K. S.
, and
Siegel
,
D. J.
,
2020
, “
Anisotropic Elastic Properties of Battery Anodes
,”
J. Electrochem. Soc.
,
167
(
11
), p.
110550
.
5.
Hirai
,
T.
,
Yoshimatsu
,
I.
, and
Yamaki
,
J.
,
1994
, “
Influence of Electrolyte on Lithium Cycling Efficiency with Pressurized Electrode Stack
,”
J. Electrochem. Soc.
,
141
(
3
), pp.
611
614
.
6.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics At Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), p.
A396
.
7.
Montgomery
,
W. M.
, and
Robertson
,
D.
,
1960
, “
Elastic Modulus of Isotopically-Concentrated Lithium
,”
Phys. Rev.
,
117
(
1953
), p.
440
.
8.
Porz
,
L.
,
Swamy
,
T.
,
Sheldon
,
B. W.
,
Rettenwander
,
D.
,
Frömling
,
T.
,
Thaman
,
H. L.
,
Berendts
,
S.
,
Uecker
,
R.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2017
, “
Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes
,”
Adv. Energy Mater.
,
7
(
20
), p.
1701003
.
9.
Ishiguro
,
K.
,
Nakata
,
Y.
,
Matsui
,
M.
,
Uechi
,
I.
,
Takeda
,
Y.
,
Yamamoto
,
O.
, and
Imanishi
,
N.
,
2013
, “
Stability of Nb-Doped Cubic Li 7 La 3 Zr 2 O 12 With Lithium Metal
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1690
A1693
.
10.
Sudo
,
R.
,
Nakata
,
Y.
,
Ishiguro
,
K.
,
Matsui
,
M.
,
Hirano
,
A.
,
Takeda
,
Y.
,
Yamamoto
,
O.
, and
Imanishi
,
N.
,
2014
, “
Interface Behavior Between Garnet-Type Lithium-Conducting Solid Electrolyte and Lithium Metal
,”
Solid State Ionics
,
262
, pp.
151
154
.
11.
Cheng
,
E. J.
,
Sharafi
,
A.
, and
Sakamoto
,
J.
,
2017
, “
Intergranular Li Metal Propagation Through Polycrystalline Li6.25Al0.25La3Zr2O12 Ceramic Electrolyte
,”
Electrochim. Acta
,
223
, pp.
85
91
.
12.
Nagao
,
M.
,
Hayashi
,
A.
,
Tatsumisago
,
M.
,
Kanetsuku
,
T.
,
Tsuda
,
T.
, and
Kuwabata
,
S.
,
2013
, “
In Situ SEM Study of a Lithium Deposition and Dissolution Mechanism in a Bulk-Type Solid-State Cell With a Li2S-P2S5 Solid Electrolyte
,”
Phys. Chem. Chem. Phys.
,
15
(
42
), pp.
18600
18606
.
13.
Ren
,
Y.
,
Shen
,
Y.
,
Lin
,
Y.
, and
Nan
,
C. W.
,
2015
, “
Direct Observation of Lithium Dendrites Inside Garnet-Type Lithium-Ion Solid Electrolyte
,”
Electrochem. commun.
,
57
, pp.
27
30
.
14.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2017
, “
Lithium Dendrite Growth Mechanisms in Polymer Electrolytes and Prevention Strategies
,”
Phys. Chem. Chem. Phys.
,
19
(
31
), pp.
20493
20505
.
15.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2018
, “
Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth
,”
J. Electrochem. Soc.
,
165
(
11
), pp.
A2654
A2666
.
16.
Greer
,
J. R.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold At the Sub-Micron Scale
,”
Appl. Phys. A Mater. Sci. Process.
,
80
(
8
), pp.
1625
1629
.
17.
Yu
,
Q.
,
Shan
,
Z. W.
,
Li
,
J.
,
Huang
,
X.
,
Xiao
,
L.
,
Sun
,
J.
, and
Ma
,
E.
,
2010
, “
Strong Crystal Size Effect on Deformation Twinning
,”
Nature
,
463
(
7279
), pp.
335
338
.
18.
Xu
,
C.
,
Ahmad
,
Z.
,
Aryanfar
,
A.
,
Viswanathan
,
V.
, and
Greer
,
J. R.
,
2017
, “
Enhanced Strength and Temperature Dependence of Mechanical Properties of Li At Small Scales and Its Implications for Li Metal Anodes
,”
Proc. Natl. Acad. Sci. USA
,
114
(
1
), pp.
57
61
.
19.
El-Awady
,
J. A.
,
2015
, “
Unravelling the Physics of Size-Dependent Dislocation-Mediated Plasticity
,”
Nat. Commun.
,
6
, p.
6926
.
20.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.
21.
Yu
,
S.
, and
Siegel
,
D. J.
,
2018
, “
Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration Through Stiff Solid Electrolytes
,”
ACS Appl. Mater. Interfaces
,
10
(
44
), pp.
38151
38158
.
22.
Arroyo-De Dompablo
,
M. E.
,
Ponrouch
,
A.
,
Johansson
,
P.
, and
Palacín
,
M. R.
,
2020
, “
Achievements, Challenges, and Prospects of Calcium Batteries
,”
Chem. Rev.
,
120
(
14
), pp.
6331
6357
.
23.
Ponrouch
,
A.
, and
Palacin
,
M. R.
,
2018
, “
On the Road Toward Calcium-Based Batteries
,”
Curr. Opin. Electrochem.
,
9
, pp.
1
7
.
24.
Wang
,
M.
,
Jiang
,
C.
,
Zhang
,
S.
,
Song
,
X.
,
Tang
,
Y.
, and
Cheng
,
H. M.
,
2018
, “
Reversible Calcium Alloying Enables a Practical Room-Temperature Rechargeable Calcium-Ion Battery With a High Discharge Voltage
,”
Nat. Chem.
,
10
(
6
), pp.
667
672
.
25.
Lipson
,
A. L.
,
Pan
,
B.
,
Lapidus
,
S. H.
,
Liao
,
C.
,
Vaughey
,
J. T.
, and
Ingram
,
B. J.
,
2015
, “
Rechargeable Ca-Ion Batteries: A New Energy Storage System
,”
Chem. Mater.
,
27
(
24
), pp.
8442
8447
.
26.
Tran
,
T. T.
, and
Obrovac
,
M. N.
,
2011
, “
Alloy Negative Electrodes for High Energy Density Metal-Ion Cells
,”
J. Electrochem. Soc.
,
158
(
12
), p.
A1411
.
27.
Ponrouch
,
A.
,
Tchitchekova
,
D.
,
Frontera
,
C.
,
Bardé
,
F.
,
Dompablo
,
M. E. D.
, and
Palacín
,
M. R.
,
2016
, “
Assessing Si-Based Anodes for Ca-Ion Batteries: Electrochemical Decalciation of CaSi2
,”
Electrochem. commun.
,
66
, pp.
75
78
.
28.
Burrow
,
J. N.
,
Pender
,
J. P.
,
Guerrera
,
J. V.
,
Wygant
,
B. R.
,
Eichler
,
J. E.
,
Calabro
,
D. C.
,
Mullins
,
C. B.
, and
Mullins
,
C. B.
,
2020
, “
CaCl2-Activated Carbon Nitride: Hierarchically Nanoporous Carbons With Ultrahigh Nitrogen Content for Selective CO2Adsorption
,”
ACS Appl. Nano Mater.
,
3
(
6
), pp.
5965
5977
.
29.
Palenzona
,
A.
,
Manfrinetti
,
P.
, and
Fornasini
,
M. L.
,
2000
, “
Phase Diagram of the Ca – Sn System
,”
J. Alloys Compd.
,
312
, pp.
165
171
.
30.
Okamoto
,
H.
,
2013
, “
Ca-Zn (Calcium-Zinc)
,”
J. Phase Equilibria Diffus.
,
34
(
2
), p.
171
.
31.
Emery
,
N.
,
Hérold
,
C.
, and
Lagrange
,
P.
,
2005
, “
Structural Study and Crystal Chemistry of the First Stage Calcium Graphite Intercalation Compound
,”
J. Solid State Chem.
,
178
(
9
), pp.
2947
2952
.
32.
Tchitchekova
,
D. S.
,
Monti
,
D.
,
Johansson
,
P.
,
Bardé
,
F.
,
Randon-Vitanova
,
A.
,
Palacín
,
M. R.
, and
Ponrouch
,
A.
,
2017
, “
On the Reliability of Half-Cell Tests for Monovalent (Li+, Na+) and Divalent (Mg2+, Ca2+) Cation Based Batteries
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1384
A1392
.
33.
Aurbach
,
D.
,
Skaletsky
,
R.
, and
Gofer
,
Y.
,
1991
, “
The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes
,”
J. Electrochem. Soc.
,
138
(
12
), pp.
3536
3545
.
34.
Huggins
,
R. A.
,
1998
, “
Lithium Alloy Negative Electrodes Formed From Convertible Oxides
,”
Solid State Ionics
,
113–115
(
12
), pp.
57
67
.
35.
Besenhard
,
J. O.
,
Yang
,
J.
, and
Winter
,
M.
,
1997
, “
Will Advanced Lithium-alloy Anodes Have a Chance in Lithium-Ion Batteries?
,”
J. Power Sources
,
68
(
1
), pp.
87
90
.
36.
Kepler
,
K. D.
,
Vaughey
,
J. T.
, and
Thackeray
,
M. M.
,
1999
, “
Copper-Tin Anodes for Rechargeable Lithium Batteries: An Example of the Matrix Effect in An Intermetallic System
,”
J. Power Sources
,
81–82
(
9
), pp.
383
387
.
37.
Fang
,
L.
, and
Chowdari
,
B. V.
,
2001
, “
Sn-Ca Amorphous Alloy As Anode for Lithium Ion Battery
,”
J. Power Sources
,
97–98
, pp.
181
184
.
38.
Pugh
,
S.
,
1954
, “
Xcii. Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals
,”
The London, Edinburgh, and Dublin Philos. Mag. J. Sci.
,
45
(
367
), pp.
823
843
.
39.
Yao
,
Z.
,
Hegde
,
V. I.
,
Aspuru-Guzik
,
A.
, and
Wolverton
,
C.
,
2019
, “
Discovery of Calcium-Metal Alloy Anodes for Reversible Ca-Ion Batteries
,”
Adv. Energy Mater.
,
9
(
9
), p.
1802994
.
40.
Hohenberg
,
P.
, and
Kohn
,
W.
,
1964
, “
Inhomogeneous Electron Gas
,”
Phys. Rev. B
,
136
(
3B
), pp.
864
871
.
41.
Kohn
,
W.
, and
Sham
,
L. J.
,
1965
, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
,
140
(
4A
), pp.
A1133
A1138
.
42.
Kresse
,
G.
, and
Hafner
,
J.
,
1993
, “
Ab Initio Molecular Dynamcis for Liquid Metals
,”
Phys. Rev. B
,
47
(
1
), p.
558
.
43.
Furthmüller
,
J.
, and
Kresse
,
G.
,
1996
, “
Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set
,”
Comput. Mater. Sci.
,
6
(
1
), pp.
15
50
.
44.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-Wave Basis Set
,”
Phys. Rev. B
,
54
(
16
), pp.
11169
11186
.
45.
Blöchl
,
P. E.
,
1994
, “
Projector Augmented-Wave Method
,”
Phys. Rev. B
,
50
(
24
), pp.
17953
17979
.
46.
Methfessel
,
M.
, and
Paxton
,
A.
,
1989
, “
High-Precision Sampling for Brillouin-Zone Integration in Metals
,”
Phys. Rev. B
,
40
(
6
), pp.
3616
3621
.
47.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
48.
Stolbov
,
S. V.
, and
Cohen
,
R. E.
,
2002
, “
First-Principles Calculation of the Formation Energy in MgO-CaO Solid Solutions
,”
Phys. Rev. B - Condens. Matter Mater. Phys.
,
65
(
9
), p.
092203
.
49.
Hill
,
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc. Sect. A
,
65
(
5
), pp.
349
354
.
50.
Callister
,
W. D.
, and
Rethwisch
,
D.
,
2008
,
Materials Science and Engineering: An Introduction
, Vol.
8
,
John Wiley and Sons
,
Hoboken, NJ
.
51.
Woodcox
,
M.
,
Young
,
J.
, and
Smeu
,
M.
,
2019
, “
Ab Initio Investigation of the Elastic Properties of Bismuth-Based Alloys
,”
Phys. Rev. B
,
100
(
10
), p.
104105
.
52.
Woodcox
,
M. A.
,
Young
,
J.
, and
Smeu
,
M.
,
2020
, “
Ab Initio Investigation of the Temperature-Dependent Elastic Properties of Bi, Te and Cu
,”
J. Phys. Condens. Matter
,
32
(
48
), p.
485902
.
53.
Anderson
,
O.
,
1963
, “
A Simplified Method for Calculating the Debye Temperature From Elastic Constants
,”
J. Phys. and Chem. of Solids
,
24
(
7
), pp.
909
917
.
54.
Schreiber
,
E.
,
Anderson
,
O.
, and
Soga
,
N.
,
1974
,
Elastic Constants and Their Measurement
, Vol.
1
,
McGraw-Hill
,
New York
.
55.
Wan
,
H.
,
Yao
,
W.
,
Zeng
,
D.
,
Zhou
,
J.
,
Ruan
,
W.
,
Liu
,
L.
, and
Wen
,
Y.
,
2019
, “
Structural, Elastic, Electronic, and Magnetic Properties of a New Full-Heusler Alloy Mn 2 MgGe: First-Principles Calculations
,”
J. Supercond. Nov. Magn.
,
32
, pp.
3001
3008
.
56.
Chen
,
Q.
, and
Sundman
,
B.
,
2001
, “
Calculation of Debye Temperature for Crystalline Structures—A Case Study on Ti, Zr, and Hf
,”
Acta Mater.
,
49
(
6
), pp.
947
961
.
57.
Wachter
,
P.
,
Filzmoser
,
M.
, and
Rebizant
,
J.
,
2001
, “
Electronic and Elastic Properties of the Light Actinide Tellurides
,”
Phys. B Condens. Matter
,
293
(
3-4
), pp.
199
223
.
58.
Cahill
,
D. G.
,
Watson
,
S. K.
, and
Pohl
,
R. O.
,
1992
, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
,
46
(
10
), pp.
6131
6140
.
59.
Jiang
,
D.
,
Wu
,
M.
,
Liu
,
D.
,
Li
,
F.
,
Chai
,
M.
, and
Liu
,
S.
,
2019
, “
Structural Stability, Electronic Structures, Mechanical Properties and Debye Temperature of Transition Metal Impurities in Tungsten: A First-Principles Study
,”
Metals (Basel)
,
9
, p.
967
.
60.
Laplanche
,
G.
,
Bonneville
,
J.
,
Joulain
,
A.
,
Gauthier-Brunet
,
V.
, and
Dubois
,
S.
,
2014
, “
Mechanical Properties of Al-Cu-Fe Quasicrystalline and Crystalline Phases: An Analogy
,”
Intermetallics
,
50
, pp.
54
58
.
61.
He
,
S.
,
Habte
,
B. T.
, and
Jiang
,
F.
,
2017
, “
LBM Prediction of Effective Thermal Conductivity of Lithium-Ion Battery Graphite Anode
,”
Int. Commun. Heat Mass Transf.
,
82
, pp.
1
8
.
You do not currently have access to this content.