Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.
Issue Section:
Research Papers
References
1.
Kimijima
, S.
, and Kasagi
, N.
, 2002
, “Performance Evaluation of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,” ASME
Paper No. GT2002-30111.10.1115/GT2002-301112.
Palsson
, J.
, Selimovic
, A.
, and Sjunnesson
, L.
, 2000
, “Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,” J. Power Sources
, 86
(1
), pp. 442
–448
.10.1016/S0378-7753(99)00464-43.
Tucker
, D.
, Liese
, E.
, and Gemmen
, R.
, 2009
, “Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation
,” National Energy Technology Laboratory, Morgantown, WV.4.
Dennis
, R.
, Samuelsen
, S.
, Williams
, M.
, Holcombe
, N.
, and Layne
, A.
, 2002
, “The National Energy Technology Laboratory's Hybrid Power Systems Program
,” ASME
Paper No. GT2002-30668.10.1115/GT2002-306685.
Song
, T. W.
, Sohn
, J. L.
, Kim
, J. H.
, Kim
, T. S.
, Ro
, S. T.
, and Suzuki
, K.
, 2005
, “Performance Analysis of a Tubular Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power System Based on a Quasi-Two Dimensional Model
,” J. Power Sources
, 142
(1
), pp. 30
–42
.10.1016/j.jpowsour.2004.10.0116.
Traverso
, A.
, Magistri
, L.
, and Massardo
, A.
, 2010
, “Turbomachinery for the Air Management and Energy Recovery in Fuel Cell Gas Turbine Hybrid Systems
,” Energy
, 35
(2
), pp. 764
–777
.10.1016/j.energy.2009.09.0277.
Haynes
, C.
, and Wepfer
, W. J.
, 2001
, “Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,” Int. J. Hydrogen Energy
, 26
(4
), pp. 369
–379
.10.1016/S0360-3199(00)00051-38.
Faghri
, A.
, and Guo
, Z.
, 2005
, “Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,” Int. J. Heat Mass Transfer
, 48
(19
), pp. 3891
–3920
.10.1016/j.ijheatmasstransfer.2005.04.0149.
Mueller
, F.
, Jabbari
, F.
, Gaynor
, R.
, and Brouwer
, J.
, 2007
, “Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,” J. Power Sources
, 172
(1
), pp. 308
–323
.10.1016/j.jpowsour.2007.05.09210.
Tucker
, D.
, Lawson
, L.
, and Gemmen
, R.
, 2005
, “Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,” ASME
Paper No. PWR2005-50127.10.1115/PWR2005-5012711.
Tucker
, D.
, Lawson
, L.
, Smith
, T. P.
, and Haynes
, C.
, 2006
, “Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation
,” ASME
Paper No. FUELCELL2006-97107.10.1115/FUELCELL2006-9710712.
Tucker
, D.
, Lawson
, L.
, Gemmen
, R.
, and Dennis
, R.
, 2005
, “Evaluation of Hybrid Fuel Cell Turbine System Startup With Compressor Bleed
,” ASME
Paper No. GT2005-68784.10.1115/GT2005-6878413.
Hughes
, D. O.
, 2011
, “A Hardware-Based Transient Characterization of Electrochemical Start-Up in an SOFC/Gas Turbine Hybrid Environment Using a 1-D Real Time SOFC Model
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, pp. 26–27.14.
Hughes
, D.
, Wepfer
, W. J.
, Davies
, K.
, Ford
, J. C.
, Haynes
, C.
, and Tucker
, D.
, 2011
, “A Real-Time Spatial SOFC Model for Hardware-Based Simulation of Hybrid Systems
,” ASME
Paper No. FuelCell2011-54591.10.1115/FuelCell2011-54591Copyright © 2015 by ASME
You do not currently have access to this content.