Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

References

1.
Kimijima
,
S.
, and
Kasagi
,
N.
,
2002
, “
Performance Evaluation of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,”
ASME
Paper No. GT2002-30111.10.1115/GT2002-30111
2.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
,
2000
, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
,
86
(
1
), pp.
442
448
.10.1016/S0378-7753(99)00464-4
3.
Tucker
,
D.
,
Liese
,
E.
, and
Gemmen
,
R.
,
2009
, “
Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation
,” National Energy Technology Laboratory, Morgantown, WV.
4.
Dennis
,
R.
,
Samuelsen
,
S.
,
Williams
,
M.
,
Holcombe
,
N.
, and
Layne
,
A.
,
2002
, “
The National Energy Technology Laboratory's Hybrid Power Systems Program
,”
ASME
Paper No. GT2002-30668.10.1115/GT2002-30668
5.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
J. H.
,
Kim
,
T. S.
,
Ro
,
S. T.
, and
Suzuki
,
K.
,
2005
, “
Performance Analysis of a Tubular Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power System Based on a Quasi-Two Dimensional Model
,”
J. Power Sources
,
142
(
1
), pp.
30
42
.10.1016/j.jpowsour.2004.10.011
6.
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2010
, “
Turbomachinery for the Air Management and Energy Recovery in Fuel Cell Gas Turbine Hybrid Systems
,”
Energy
,
35
(
2
), pp.
764
777
.10.1016/j.energy.2009.09.027
7.
Haynes
,
C.
, and
Wepfer
,
W. J.
,
2001
, “
Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,”
Int. J. Hydrogen Energy
,
26
(
4
), pp.
369
379
.10.1016/S0360-3199(00)00051-3
8.
Faghri
,
A.
, and
Guo
,
Z.
,
2005
, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
,
48
(
19
), pp.
3891
3920
.10.1016/j.ijheatmasstransfer.2005.04.014
9.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
,
2007
, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
(
1
), pp.
308
323
.10.1016/j.jpowsour.2007.05.092
10.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R.
,
2005
, “
Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,”
ASME
Paper No. PWR2005-50127.10.1115/PWR2005-50127
11.
Tucker
,
D.
,
Lawson
,
L.
,
Smith
,
T. P.
, and
Haynes
,
C.
,
2006
, “
Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation
,”
ASME
Paper No. FUELCELL2006-97107.10.1115/FUELCELL2006-97107
12.
Tucker
,
D.
,
Lawson
,
L.
,
Gemmen
,
R.
, and
Dennis
,
R.
,
2005
, “
Evaluation of Hybrid Fuel Cell Turbine System Startup With Compressor Bleed
,”
ASME
Paper No. GT2005-68784.10.1115/GT2005-68784
13.
Hughes
,
D. O.
,
2011
, “
A Hardware-Based Transient Characterization of Electrochemical Start-Up in an SOFC/Gas Turbine Hybrid Environment Using a 1-D Real Time SOFC Model
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, pp. 26–27.
14.
Hughes
,
D.
,
Wepfer
,
W. J.
,
Davies
,
K.
,
Ford
,
J. C.
,
Haynes
,
C.
, and
Tucker
,
D.
,
2011
, “
A Real-Time Spatial SOFC Model for Hardware-Based Simulation of Hybrid Systems
,”
ASME
Paper No. FuelCell2011-54591.10.1115/FuelCell2011-54591
You do not currently have access to this content.