Feeding vaporized methanol to the direct methanol fuel cell (DMFC) helps reduce the effects of methanol crossover (MCO) and facilitates the use of high-concentration or neat methanol so as to enhance the energy density of the fuel cell system. This paper reports a novel system design coupling a catalytic combustor with a vapor-feed air-breathing DMFC. The combustor functions as an assistant heat provider to help transform the liquid methanol into vapor phase. The feasibility of this method is experimentally validated. Compared with the traditional electric heating mode, the operation based on this catalytic combustor results in a higher cell performance. Results indicate that the values of methanol concentration and methanol vapor chamber (MVC) temperature both have direct effects on the cell performance, which should be well optimized. As for the operation of the catalytic combustor, it is necessary to optimize the number of capillary wicks and also catalyst loading. In order to fast trigger the combustion reaction, an optimal oxygen feed rate (OFR) must be used. The required amount of oxygen to sustain the reaction can be far lower than that for methanol ignition in the starting stage.

References

1.
Dyer
,
C. K.
,
2002
, “
Fuel Cells for Portable Applications
,”
J. Power Sources
,
106
(
1–2
), pp.
31
34
.10.1016/S0378-7753(01)01069-2
2.
Wee
,
J. H.
,
2007
, “
A Feasibility Study on Direct Methanol Fuel Cells for Laptop Computers Based on a Cost Comparison With Lithium-Ion Batteries
,”
J. Power Sources
,
173
(
1
), pp.
424
436
.10.1016/j.jpowsour.2007.04.084
3.
Zhao
,
T. S.
,
Chen
,
R.
,
Yang
,
W. W.
, and
Xu
,
C.
,
2009
, “
Small Direct Methanol Fuel Cells With Passive Supply of Reactants
,”
J. Power Sources
,
191
(
2
), pp.
185
202
.10.1016/j.jpowsour.2009.02.033
4.
Heinzel
,
A.
, and
Barragán
,
V. M.
,
1999
, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
,
84
(
1
), pp.
70
74
.10.1016/S0378-7753(99)00302-X
5.
Wang
,
M.
,
Guo
,
H.
, and
Ma
,
C.
,
2006
, “
Dynamic Characteristics of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
202
207
.10.1115/1.2174070
6.
Neburchilov
,
V.
,
Martin
,
J.
,
Wang
,
H.
, and
Zhang
,
J.
,
2007
, “
A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
221
238
.10.1016/j.jpowsour.2007.03.044
7.
Liu
,
H.
,
Song
,
C.
,
Zhang
,
L.
,
Zhang
,
J.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
,
2006
, “
A Review of Anode Catalysis in the Direct Methanol Fuel Cell
,”
J. Power Sources
,
155
(
2
), pp.
95
110
.10.1016/j.jpowsour.2006.01.030
8.
Zainoodin
,
A. M.
,
Kamarudin
,
S. K.
, and
Daud
,
W. R. W.
,
2010
, “
Electrode in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4606
4621
.10.1016/j.ijhydene.2010.02.036
9.
Yuan
,
W.
,
Tang
,
Y.
,
Yang
,
X.
, and
Wan
,
Z.
,
2012
, “
Toward Using Porous Metal–Fiber Sintered Plate as Anodic Methanol Barrier in a Passive Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
18
), pp.
13510
13521
.10.1016/j.ijhydene.2012.06.094
10.
Li
,
X.
,
Faghri
,
A.
, and
Xu
,
C.
,
2010
, “
Structural Optimization of the Direct Methanol Fuel Cell Passively Fed With a High-Concentration Methanol Solution
,”
J. Power Sources
,
195
(
24
), pp.
8202
8208
.10.1016/j.jpowsour.2010.06.041
11.
Zhang
,
H. F.
, and
Hsing
,
I. M.
,
2007
, “
Flexible Graphite-Based Integrated Anode Plate for Direct Methanol Fuel Cells at High Methanol Feed Concentration
,”
J. Power Sources
,
167
(
2
), pp.
450
454
.10.1016/j.jpowsour.2007.02.061
12.
Nakagawa
,
N.
,
Abdelkareem
,
M. A.
, and
Sekimoto
,
K.
,
2006
, “
Control of Methanol Transport and Separation in a DMFC With a Porous Support
,”
J. Power Sources
,
160
(
1
), pp.
105
115
.10.1016/j.jpowsour.2006.01.066
13.
Yuan
,
W.
,
Zhou
,
B.
,
Deng
,
J.
,
Tang
,
Y.
,
Zhang
,
Z.
, and
Li
,
Z.
, “
Overview on the Developments of Vapor-Feed Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
6689
6704
.10.1016/j.ijhydene.2014.02.002
14.
Shukla
,
A. K.
,
Christensen
,
P. A.
,
Hamnett
,
A.
, and
Hogarth
,
M. P.
,
1995
, “
A Vapour-Feed Direct-Methanol Fuel Cell With Proton-Exchange Membrane Electrolyte
,”
J. Power Sources
,
55
(
1
), pp.
87
91
.10.1016/0378-7753(94)02150-2
15.
Hogarth
,
M.
,
Christensen
,
P.
,
Hamnett
,
A.
, and
Shukla
,
A.
,
1997
, “
The Design and Construction of High-Performance Direct Methanol Fuel Cells. 2. Vapour-Feed Systems
,”
J. Power Sources
,
69
(
1–2
), pp.
125
136
.10.1016/S0378-7753(97)02581-0
16.
Scott
,
K.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
,
1999
, “
Engineering Aspects of the Direct Methanol Fuel Cell System
,”
J. Power Sources
,
79
(
1
), pp.
43
59
.10.1016/S0378-7753(98)00198-0
17.
Kallo
,
J.
,
Kamara
,
J.
,
Lehnert
,
W.
, and
Helmolt
,
R.
,
2004
, “
Cell Voltage Transients of a Gas-Fed Direct Methanol Fuel Cell
,”
J. Power Sources
,
127
(
1–2
), pp.
181
186
.10.1016/j.jpowsour.2003.09.014
18.
Guo
,
Z.
, and
Faghri
,
A.
,
2007
, “
Vapor Feed Direct Methanol Fuel Cells With Passive Thermal-Fluids Management System
,”
J. Power Sources
,
167
(
2
), pp.
378
390
.10.1016/j.jpowsour.2007.02.024
19.
Faghri
,
A.
, and
Guo
,
Z.
,
2008
, “
An Innovative Passive DMFC Technology
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1614
1622
.10.1016/j.applthermaleng.2007.10.024
20.
Chang
,
I.
,
Ha
,
S.
,
Kim
,
J.
,
Lee
,
J. Y.
, and
Cha
,
S. W.
,
2008
, “
Performance Evaluation of Passive Direct Methanol Fuel Cell With Methanol Vapour Supplied Through a Flow Channel
,”
J. Power Sources
,
184
(
1
), pp.
9
15
.10.1016/j.jpowsour.2008.06.036
21.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
,
2009
, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
(
5
), pp.
449
477
.10.1016/j.progpolymsci.2008.12.003
22.
Drake
,
J. A.
,
Gilicinski
,
A. G.
,
Guay
,
G. G.
, and
Pinnell
,
L.
, “
Enhanced Fuel Delivery for Direct Methanol Fuel Cells
,” U.S. Patent No. 8,114,554 B2.
23.
Feng
,
X.
, and
Huang
,
R. Y. M.
,
1997
, “
Liquid Separation by Membrane Pervaporation: A Review
,”
Ind. Eng. Chem. Res.
,
36
(
4
), pp.
1048
1066
.10.1021/ie960189g
24.
Kim
,
H. K.
,
2006
, “
Passive Direct Methanol Fuel Cells Fed With Methanol Vapor
,”
J. Power Sources
,
162
(
2
), pp.
1232
1235
.10.1016/j.jpowsour.2006.08.006
25.
Eccarius
,
S.
,
Tian
,
X.
,
Krause
,
F.
, and
Agert
,
C.
,
2008
, “
Completely Passive Operation of Vapor-Fed Direct Methanol Fuel Cells for Portable Applications
,”
J. Micromech. Microeng.
,
18
(
10
), p.
104010
.10.1088/0960-1317/18/10/104010
26.
Eccarius
,
S.
,
Krause
,
F.
,
Beard
,
K.
, and
Agert
,
C.
,
2008
, “
Passively Operated Vapor-Fed Direct Methanol Fuel Cells for Portable Applications
,”
J. Power Sources
,
182
(
2
), pp.
565
579
.10.1016/j.jpowsour.2008.03.091
27.
Xu
,
C.
,
Faghri
,
A.
, and
Li
,
X.
,
2010
, “
Development of a High Performance Passive Vapor-Feed DMFC Fed With Neat Methanol
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
B1109
B1117
.10.1149/1.3435256
28.
Xu
,
C.
,
Faghri
,
A.
, and
Li
,
X.
,
2011
, “
Improving the Water Management and Cell Performance for the Passive Vapor-Feed DMFC Fed With Neat Methanol
,”
Int. J. Hydrogen Energy
,
36
(
14
), pp.
8468
8477
.10.1016/j.ijhydene.2011.03.115
29.
Li
,
X.
, and
Faghri
,
A.
,
2011
, “
Effect of the Cathode Open Ratios on the Water Management of a Passive Vapor-Feed Direct Methanol Fuel Cell Fed With Neat Methanol
,”
J. Power Sources
,
196
(
15
), pp.
6318
6324
.10.1016/j.jpowsour.2011.03.047
30.
He
,
Y. L.
,
Miao
,
Z.
, and
Yang
,
W. W.
,
2012
, “
Characteristics of Heat and Mass Transport in a Passive Direct Methanol Fuel Cell Operated With Concentrated Methanol
,”
J. Power Sources
,
208
(1), pp.
180
186
.10.1016/j.jpowsour.2012.02.033
31.
Liu
,
J. G.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Wong
,
C. W.
,
2005
, “
The Effect of Methanol Concentration on the Performance of a Passive DMFC
,”
Electrochem. Commun.
,
7
(
3
), pp.
288
294
.10.1016/j.elecom.2005.01.011
You do not currently have access to this content.