This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

References

1.
Chiu
,
Y. L.
,
Diong
,
B.
, and
Gemmen
,
R. S.
,
2004
, “
An Improved Small-Signal Model of the Dynamic Behavior of PEM Fuel Cells
,”
IEEE Trans. Ind. Appl.
,
40
(
4
), pp.
970
977
.10.1109/TIA.2004.830746
2.
Sedghisigarchi
,
K.
, and
Feliachi
,
A.
,
2006
, “
Impact of Fuel Cell on Load Frequency Control in Power Distribution System
,”
IEEE Trans. Energy Conver.
,
21
(1), pp.
50
256
.10.1109/TEC.2005.847962
3.
Llic
,
M.
,
Galianca
,
F.
, and
Fink
,
L.
,
1998
,
Power System Restructuring, Engineering & Economics
,
Kluwer
,
Norwell, MA
, Ch. 12.
4.
Sedghisigarchi
,
K.
, and
Felichi
,
A.
,
2002
, “
Dynamic Model of a Grid-Connected Solid Oxide Fuel Cell (SOFC)
,”
34th North American Power Symposiuim
, Tempe, AZ, October 13–15, pp.
107
113
.
5.
Jurado
,
F.
, and
Valverde
,
M.
,
2005
, “
Genetic Fuzzy Control Applied to the SOFC for Power Quality Improvement
,”
Elec. Power Syst. Res.
,
76
(1-3), pp.
93
105
.10.1016/j.epsr.2005.05.007
6.
Jurado
,
F.
,
2003
, “
Power Supply Improvement With a SOFC Plant by Neural-Network Based Control
,”
J. Power Sources
,
117
(1-2), pp.
75
83
.10.1016/S0378-7753(03)00309-4
7.
Chatterjee
,
K.
,
2011
, “
Design of Dual Mode PI Controller for Load Frequency Control
,”
Int. J. Emerging Elec. Power Syst.
,
11
(
4
)
.
10.2202/1553-779X.2452
8.
Petruzzi
,
L.
,
Cocch
,
L.
, and
Fineschi
,
F.
,
2003
, “
A Global Thermo-Electrochemical Model for SOFC Systems Design and Engineering
,”
J. Power Sources
,
118
(1-2), pp.
96
107
.10.1016/S0378-7753(03)00067-3
9.
Li.
,
Y. H.
,
Rajakaruna
,
S.
, and
Choi
,
S. S.
,
2009
, “
Control of a Solid Oxide Fuel Cell Power Plant in a Grid-Connected System
,”
IEEE Tran. Energy Conver.
,
22
(
2
), pp.
405
412
.10.1109/TEC.2005.853756
10.
Hatziadoniu
,
C.
,
Lobo
,
A. A.
, and
Pourboghrat
,
F.
,
2002
, “
A Simplified Dynamic Model of Grid Connected Fuel Cell Generators
,”
IEEE Trans. Power Del.
,
17
(
2
), pp.
467
473
.10.1109/61.997919
11.
Andujar
,
J.
,
Segura
,
F.
,
Duran
,
E.
, and
Renteria
,
L. A.
,
2011
, “
Optimal Interface Based on Electronic in Distributed Generation Systems for Fuel Cell
,”
Renewal Energy
,
36
(11), pp.
2759
2770
.10.1016/j.renene.2011.04.005
12.
Farooque
,
M.
, and
Maru
,
H.
,
2001
, “
Fuel Cells—The Clean and Efficient Power Generators
,”
Proc. IEEE
,
89
(
12
), pp.
1819
1829
.10.1109/5.975917
13.
Mazumdar
,
S. K.
,
2004
, “
Solid-Oxide-Fuel-Cell Performance and Durability: Resolution of the Effects of Power-Conditioning Systems and Application Loads
,”
IEEE Trans. Power Electron.
,
19
(
5
), pp.
1263
1278
.10.1109/TPEL.2004.833992
14.
Krumdieck
,
S.
,
Page
,
S.
, and
Round
,
S.
,
2004
, “
Solid Oxide Fuel Cell Architecture and System Design for Secure Power on an Unstable Grid
,”
J. Power Sources
,
125
(
1
), pp.
189
198
.10.1016/j.jpowsour.2003.07.011
15.
Li
,
Y. H.
,
Choi
,
S. S.
, and
Rajakaruna
,
S.
,
2005
, “
An Analysis of the Control and Operation of a Solid Oxide Fuel Cell Power Plant in an Isolated System
,”
IEEE Trans. Energy Convers.
,
20
(
2
), pp.
381
387
.10.1109/TEC.2005.847998
You do not currently have access to this content.