A solid oxide fuel cell (SOFC), which is a kind of fuel cell (FC) converting chemical energy into electricity directly without mechanical parts, has potential for the clean and efficient power generation from a wide variety of fuels ranging from hydrocarbons to renewables and coal-derived fuels. The Institute of Nuclear Energy Research has been committed to developing the SOFC technology since 2003 and the cell test is one of the working items in the project. Cells are the most important components in an SOFC stack, which are responsible for the electrical output functioning, as the heart in the human body, to the stack. Before stacking, it is essential to examine and evaluate the electrical performance of the cells that could be used in our stacks. There are two commercial cells tested in this paper. For both cell A, an anode supported cell, and cell B, an electrolyte supported cell, the cells with a lower open circuit voltage at a higher operating temperature are contributed by the Nernst equation. The I-V curve for a lower operating temperature with a steeper slope at the low current zone is credited to the increase of activation polarization from the triple phase boundary. Comparison between cell A and cell B, the electrical performance of cell A is better than that of cell B due to cell A possessing a lower total resistance at the same operating temperature.

References

1.
Chuang
,
M. C.
and
Ma
,
H. W.
,
2008
, “
An Assessment of Taiwan's Energy Policy Using Multi-Dimensional Energy Security Indicators
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
301
311
.10.1016/j.rser.2012.09.034
2.
Larminie
,
J.
and
Dicks
,
A.
,
2000
,
Fuel Cell Systems Explained
,
John Wiley and Sons
,
London
, Chap. 7.
3.
Lai
,
W. H.
,
Hsiao
,
C. A.
,
Lee
,
C. H.
,
Chyou
,
Y. P.
, and
Tsai
,
Y. C.
,
2007
, “
Experimental Simulation on the Integration of Solid Oxide Fuel Cell and Micro-Turbine Generation System
,”
J. Power Sources
,
171
(
1
), pp.
130
139
.10.1016/j.jpowsour.2006.11.017
4.
Braun
,
R. J.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2006
, “
Evaluation of System Configurations for Solid Oxide Fuel Cell-Based Micro-Turbined Teat and Power Generators in Residential Applications
,”
J. Power Sources
,
158
(
2
), pp.
1290
1305
.10.1016/j.jpowsour.2005.10.064
5.
Araki
,
T.
,
Ohba
,
T.
,
Takezawa
,
S.
,
Onda
,
K.
, and
Sakaki
,
Y.
,
2006
, “
Cycle Analysis of Planar SOFC Power Generation With Serial Connection of Low and High Temperature SOFCs
,”
J. Power Sources
,
158
(
1
), pp.
52
59
.10.1016/j.jpowsour.2005.09.003
6.
Musa
,
A.
and
Paepe
,
M.
,
2008
, “
Performance of Combined Internally Reformed Intermediate/High Temperature SOFC Cycle Compared to Internally Reformed Two-Staged Intermediate Temperature SOFC Cycle
,”
Int. J. Hydrogen Energy
,
33
(
17
), pp.
4665
4672
.10.1016/j.ijhydene.2008.05.093
7.
Obara
,
S.
,
2010
, “
Power Generation Efficiency of an SOFC-PEFC Combined System With Shift Utilization of SOFC Exhaust Heat
,”
Int. J. Hydrogen Energy
, Vol.
35
(
2
), pp.
757
767
.
10.1016/j.ijhydene.2009.11.032
8.
Yang
,
R. J.
,
Lee
,
M. C.
,
Chang
,
J. C.
,
Lin
,
T. N.
,
Chang
,
Y. C.
,
Kao
,
W. X.
,
Lee
,
L. S.
, and
Cheng
,
S. W.
,
2012
, “
Fabrication and Characterization of a Sm0.2Ce0.8O1.9 Electrolyte Film by the Spin-Coating Method for a Low-Temperature Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
206
, pp.
111
118
.10.1016/j.jpowsour.2012.01.024
9.
Cheng
,
S. W.
,
Shui
,
Y. H.
,
Cheng
,
Y. N.
, and
Lee
,
R. Y.
,
2012
, “
Measurements of Lateral Impedance and Local Characteristics of Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p. 045001.10.1115/1.4006799
10.
Hwang
,
C. S.
,
Tsai
,
C. H.
,
Chang
,
C. L.
,
Yu
,
J. F.
, and
Nie
,
S. H.
,
2012
, “
High Power Plasma Sprayed Intermediate Temperature Solid Oxide Fuel Cells With Sm0.5Sr0.5CoO3-δ Cathode
,”
Proc. Eng.
,
36
, pp.
81
87
.10.1016/j.proeng.2012.03.014
11.
Lee
,
R. Y.
,
Cheng
,
Y. N.
,
Hwang
,
C. S.
, and
Lee
,
M. C.
,
2012
, “
Development of SOFC Technology at INER
,”
10th European SOFC Forum
, Lucerne, Switzerland, June 26–29, pp.
35
45
.
12.
Chen
,
D.
,
He
,
H.
,
Zhang
,
D.
,
Wang
,
H.
, and
Ni
,
M.
,
2013
, “
Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes With a Mixed Electronic and Ionic Conductor
,”
Energies
,
6
(
3
), pp.
1632
1656
.10.3390/en6031632
13.
Singhal
,
S. C.
and
Kendall
,
K.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
, Chap. 9.
14.
Morales
,
M.
,
Roa
,
J. J.
,
Capdevila
,
X. G.
,
Segarra
,
M.
, and
Pinol
,
S.
,
2010
, “
Mechanical Properties at the Nanometer Scale of GDC and YSZ Used as Electrolytes for Solid Oxide Fuel Cells
,”
Acta Mater.
,
58
(
7
), pp.
2504
2509
.10.1016/j.actamat.2009.12.036
15.
Huang
,
Q. A.
,
Hui
,
R.
,
Wang
,
B.
, and
Zhang
,
J.
,
2007
, “
A Review of AC Impedance Modeling and Validation in SOFC Diagnosis
,”
Electrochim. Acta
,
52
(
28
), pp.
8144
8164
.10.1016/j.electacta.2007.05.071
16.
DiGiuseppe
,
G.
and
Sun
,
L.
,
2011
, “
Electrochemical Performance of a Solid Oxide Fuel Cell With an LSCF Cathode Under Different Oxygen Conditions
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
5076
5087
.10.1016/j.ijhydene.2011.01.017
You do not currently have access to this content.