The sol-gel technique is a versatile and relatively simple method, easily adapted to synthesize complex metal oxide formulations. The sol-gel technique takes advantage of the structural directing properties and templating characteristics of nonionic, anionic, and cationic surfactants to produce porous iridium oxide with samarium doped ceria (SDC) nanoparticles. The nanopowders were calcined at a temperature of 950 °C and the crystalline nanostructures and compositions were characterized by high resolution transmission electron microscopy and X-ray diffraction. The textural characteristics and particle morphology were respectively characterized by nitrogen sorption at 77.5 K and scanning electron microscopy. The electrochemical properties were characterized by using Kittec squadro, solid oxide fuel cell testing equipment, with air and hydrogen as the gases used. The nature of the surfactant influenced the particle morphology, pore diameter, pore size, crystallite size, surface area, and electrochemical properties.

References

1.
Lou
,
Z.
,
Peng
,
J.
,
Dai
,
N.
,
Qiao
,
J.
,
Yan
,
Y.
,
Wang
,
Z.
,
Wang
,
J.
, and
Sun
,
K.
,
2012
, “
High Performance La3Ni2O7 Cathode Prepared by a Facile Sol-Gel Method for Intermediate Temperature Solid Oxide Fuel Cells
,”
Electrochem. Commun.
,
22
, pp.
97
100
.10.1016/j.elecom.2012.06.004
2.
Mastuli
,
M. S.
,
Ansaria
,
N. S.
,
Nawawia
,
M. A.
, and
Maria
,
A.
,
2012
, “
Effects of Cationic Surfactant in Sol-Gel Synthesis of Nano-Sized Magnesium Oxide
,”
APCBEE Proc.
,
3
, pp.
93
98
.10.1016/j.apcbee.2012.06.052
3.
Lou
,
Z.
,
Qiao
,
J.
,
Yan
,
Y.
,
Peng
,
J.
,
Wang
,
Z.
,
Jiang
,
T.
, and
Sun
,
K.
,
2012
, “
Synthesis and Characterization of Aluminum-Doped Perovskites as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
15
), pp.
11345
11350
.10.1016/j.ijhydene.2012.04.113
4.
Ermokhina
,
N. I.
,
Nevinsky
, V
. A.
,
Manorik
,
P. A.
,
Ilyin
, V
. G.
,
Shcherbatyuk
,
N. N.
,
Klymchuk
,
D. O.
, and
Puziy
,
A. M.
,
2012
, “
Synthesis of Large-Pore Mesoporous Nanocrystalline TiO2 Microspheres
,”
Mater. Lett.
,
75
, pp.
68
70
.10.1016/j.matlet.2012.01.133
5.
Parada
,
K. T.
,
Aguilar
,
G. V.
,
Mantilla
,
A.
,
Valenzuela
,
M. A.
, and
Hernández
,
E.
,
2013
, “
Synthesis and Characterization of Ni/Ce–SiO2 and Co/Ce–TiO2 Catalysts for Methane Decomposition
,”
Fuel Cell
,
110
, pp.
70
75
.10.1016/j.fuel.2012.11.022
6.
Chen
,
L. F.
,
Wang
,
J. A.
,
Norena
,
L. E.
,
Aguilar
,
J.
,
Navarrete
,
J.
, and
Salas
,
O.
,
2007
, “
Synthesis and Physicochemical Properties of Zr–MCM-41 Mesoporous Molecular Sieves and Pt/H3PW12O40/Zr–MCM-41 Catalysts
,”
J Solid State Chem.
,
180
(
10
), pp.
2958
2972
.10.1016/j.jssc.2007.08.023
7.
Gonzalez
,
O. A.
,
Valenzuela
,
M. A.
, and
Wang
,
J. A.
,
2006
, “
Catalytic Decomposition of Methane Over Cerium-Doped Ni Catalysts
,”
MRS Proc.
,
885
, pp.
223
238
.10.1557/PROC-0885-A09-49
8.
Schacht
,
P.
,
Ramirez
,
S.
, and
Ancheyta
,
J.
,
2009
, “
CoMo/Ti–MCM-41/Alumina Catalysts: Properties and Activity in the Hydrodesulfurization (HDS) of Dibenzothiophene (DBT)
,”
Energy Fuels
,
23
(
10
), pp.
4860
4865
.10.1021/ef900248g
9.
Das
,
S. K.
,
Bhunia
,
M. K.
,
Sinha
,
A. K.
, and
Bhaumik
,
A.
,
2009
, “
Self-Assembled Mesoporous Zirconia and Sulfated Zirconia Nanoparticles Synthesized by Triblock Copolymer as Template
,”
J. Phys. Chem.
,
113
(
20
), pp.
8918
8923
.10.1021/jp9014096
10.
Liu
,
S. G.
,
Wang
,
H.
,
Li
,
J. P.
,
Zhao
,
N.
,
Wei
,
W.
, and
Sun
,
Y. H.
,
2007
, “
A Facile Route to Synthesize Mesoporous Zirconia With Ultra High Thermal Stability
,”
Mater. Res. Bull.
,
42
(
1
), pp.
171
176
.10.1016/j.materresbull.2006.04.035
11.
Wang
,
K.
,
Morris
,
M. A.
,
Holmes
,
J. D.
,
Yu
,
J.
, and
Xu
,
R.
,
2009
, “
Thermally Stable Nanocrystallised Mesoporous Zirconia Thin Films
,”
Micropor. Mesopor. Mater.
,
117
(
1–2
), pp.
161
164
.10.1016/j.micromeso.2008.06.019
12.
Duan
,
G.
,
Zhang
,
C. A.
,
Li
,
X.
,
Yang
,
L.
, and
Lu
,
X.
,
2008
, “
Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methylmethacrylate) Template
,”
Nanoscale Res. Lett.
,
3
(
3
), pp.
118
122
.10.1007/s11671-008-9123-7
13.
Chen
,
Y.
,
Lunsford
,
S. K.
,
Song
,
Y.
,
Ju
,
H.
,
Falaras
,
P.
,
Likodimos
, V
.
,
Kontos
,
A. G.
, and
Dionysiu
,
D. D.
,
2011
,“
Synthesis, Characterization and Electrochemical Properties of Mesoporous Zirconia Nanomaterials Prepared by Self-Assembling Sol–Gel Method With Tween 20 as a Template
,”
Chem. Eng. J.
,
170
(
2–3
), pp.
518
524
.10.1016/j.cej.2010.09.063
14.
Okkay
,
H.
,
Bayramoglu
,
M.
, and
Öksüzömer
,
M. F.
,
2013
, “
Ce0.8Sm0.2O1.9 Synthesis for Solid Oxide Fuel Cell Electrolyte by Ultrasound Assisted Co-Precipitation Method
,”
Ultrason. Sonochem.
,
20
(
3
), pp.
978
983
.10.1016/j.ultsonch.2012.10.013
15.
Blennow
,
P.
,
Hjelm
,
J.
,
Klemens
,
T.
,
Ramousse
,
S.
,
Kromp
,
A.
,
Leonide
,
A.
, and
Weber
,
A.
,
2011
, “
Manufacturing and Characterization of Metal-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
196
(
17
), pp.
7117
7125
.10.1016/j.jpowsour.2010.08.088
16.
Shen
,
C.
and
Shaw
,
L. L.
,
2010
, “
FTIR Analysis of the Hydrolysis Rate in the Sol–Gel Formation of Gadolinia-Doped Ceria With Acetylacetonate Precursors
,”
J. Sol-Gel Sci. Technol.
,
53
(
3
), pp.
571
577
.10.1007/s10971-009-2133-9
17.
Brasil
,
M. C.
,
Benvenutti
,
E. V.
,
Gregorio
,
J. R.
, and
Gerbase
,
A. E.
,
2005
, “
Iron Acetylacetonate Complex Anchored on Silica Xerogel Polymer
,”
React. Funct. Polym.
,
63
(
2
), pp.
135
141
.10.1016/j.reactfunctpolym.2005.02.014
18.
Krunks
,
M.
,
Oja
, I
.
,
Tonsuaadu
,
K.
,
EsSouni
,
M.
,
Gruselle
,
M.
, and
Niinisto
,
L.
,
2005
, “
Thermoanalytical Study of Acetaylacetonate-Modified Titanium (IV) Isopropoxide as a Precursor for TiO2 Films
,”
J. Therm. Anal. Calorim.
,
80
(
2
), pp.
483
488
.10.1007/s10973-005-0681-y
You do not currently have access to this content.