The kinetics of carbon monoxide desorption on a platinum catalyst under humidified conditions were investigated with the steady state isotropic transient kinetic analysis (SSITKA) method. The effect of the humidity level on desorption kinetics was quantified. The carbon monoxide (CO) desorption kinetic constant was calculated regardless of the gas flow rate. The kinetic constant dropped up to 58% with the increasing relative humidity. The negative effect of humidity in terms of CO poisoning for PEM fuel cells was determined.

References

1.
Yim
,
S.-D.
,
Sohn
,
Y.-J.
,
Yoon
,
Y.-G.
,
Um
,
S.
,
Kim
,
C.-S.
, and
Lee
,
W.-Y.
,
2008
, “
Operating Characteristics of 40 W-Class PEMFC Stacks Using Reformed Gas Under Low Humidifying Conditions
,”
J. Power Sources
,
178
(
2
), pp.
711
715
.10.1016/j.jpowsour.2007.09.104
2.
Yoo
,
J. S.
,
Kim
,
H. T.
,
Joh
,
H.-I.
,
Kim
,
H.
, and
Moon
,
S. H.
,
2011
, “
Preparation of a CO-Tolerant PtRuxSny/C Electrocatalyst With an Optimal Ru/Sn Ratio by Selective Sn-Deposition on the Surfaces of Pt and Ru
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
1930
1938
.10.1016/j.ijhydene.2010.11.061
3.
Geng
,
B.
,
Cai
,
J.
,
Liang
,
S.
,
Liu
,
S. X.
,
Li
,
M. F.
, and
Chen
,
Y.-H.
,
2010
, “
Temperature Effects on CO Adsorption/Desorption at Pt Film Electrodes: An Electrochemical In Situ Infrared Spectroscopic Study
,”
Phys. Chem. Chem. Phys.
,
12
(
36
), pp.
10888
10895
.10.1039/c002665d
4.
Wasileski
,
S. A.
,
Weaver
,
M. J.
, and
Koper
,
M. T. M.
,
2001
, “
Potential-Dependent Chemisorption of Carbon Monoxide on Platinum Electrodes: New Insight From Quantum-Chemical Calculations Combined With Vibrational Spectroscopy
,”
J. Electroanal. Chem.
,
500
(
1–2
), pp.
344
355
.10.1016/S0022-0728(00)00420-4
5.
Davies
,
J. C.
and
Tsotridis
,
G.
,
2008
, “
Temperature-Dependent Kinetic Study of CO Desorption From Pt PEM Fuel Cell Anodes
,”
J. Phys. Chem. C
,
112
(
9
), pp.
3392
3397
.10.1021/jp710121w
6.
Watanabe
,
M.
and
Motoo
,
S.
,
1975
, “
Electrocatalysis by Ad-Atoms: Part II. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-Atoms
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
60
(
3
), pp.
267
273
.10.1016/S0022-0728(75)80261-0
7.
Gasteiger
,
H. A.
,
Marković
,
N.
,
Ross
,
P. N.
, Jr.
, and
Cairns
,
E. J.
,
1994
, “
Electro-Oxidation of Small Organic Molecules on Well-Characterized Pt-Ru Alloys
,”
Electrochim. Acta
,
39
(
11–12
), pp.
1825
1832
.10.1016/0013-4686(94)85171-9
8.
Gasteiger
,
H. A.
,
Marković
,
N.
,
Ross
,
P. N.
, Jr.
, and
Cairns
,
E. J.
,
1994
, “
Carbon Monoxide Electrooxidation on Well-Characterized Platinum-Ruthenium Alloys
,”
J. Phys. Chem.
,
98
(
2
), pp.
617
625
.10.1021/j100053a042
9.
Gasteiger
,
H. A.
,
Marković
,
N. M.
, and
Ross
,
P. N.
,
1995
, “
H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62 °C
,”
J. Phys. Chem.
,
99
(
45
), pp.
16757
16767
.10.1021/j100045a042
10.
Gasteiger
,
H. A.
,
Ross
,
P. N.
, Jr.
, and
Cairns
,
E. J.
,
1993
, “
LEIS and AES on Sputtered and Annealed Polycrystalline Pt-Ru Bulk Alloys
,”
Surf. Sci.
,
293
(
1–2
), pp.
67
80
.10.1016/0039-6028(93)90244-E
11.
Gasteiger
,
H. A.
,
Marković
,
N. M.
, and
Ross
,
P. N.
,
1995
, “
H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating-Disk Electrode Studies of the Pure Gases Including Temperature Effects
,”
J. Phys. Chem.
,
99
(
20
), pp.
8290
8301
.10.1021/j100020a063
12.
Davies
,
J. C.
,
Hayden
,
B. E.
, and
Pegg
,
D. J.
,
2000
, “
The Modification of Pt(110) by Ruthenium: CO Adsorption and Electro-Oxidation
,”
Surf. Sci.
,
467
(
1–3
), pp.
118
130
.10.1016/S0039-6028(00)00743-3
13.
Lu
,
C.
,
Rice
,
C.
,
Masel
,
R. I.
,
Babu
,
P. K.
,
Waszczuk
,
P.
,
Kim
,
H. S.
,
Oldfield
,
E.
, and
Wieckowski
,
A.
,
2002
, “
UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts
,”
J. Phys. Chem. B
,
106
(
37
), pp.
9581
9589
.10.1021/jp020169u
14.
Igarashi
,
H.
,
Fujino
,
T.
,
Zhu
,
Y.
,
Uchida
,
H.
, and
Watanabe
,
M.
,
2001
, “
CO Tolerance of Pt Alloy Electrocatalysts for Polymer Electrolyte Fuel Cells and the Detoxification Mechanism
,”
Phys. Chem. Chem. Phys.
,
3
(
3
), pp.
306
314
.10.1039/b007768m
15.
Mitchell
,
P. C. H.
, Wolohan, P., Thompsett, D. and Cooper, S. J.,
1997
, “
Experimental and Theoretical Studies of Fuel Cell Catalysts: Density Functional Theory Calculations of H2 Dissociation and CO Chemisorption on Fuel Cell Metal Dimers
,”
J. Mol. Catal. A: Chem.
,
119
(
1–3
), pp.
223
233
.10.1016/S1381-1169(96)00486-4
16.
Watanabe
,
M.
, Zhu, Y., Igarashi, H., and Uchida, H.,
2000
, “
Mechanism of CO Tolerance at Pt-Alloy Anode Catalysts for Polymer Electrolyte Fuel Cells
,”
Electrochemistry
,
68
(
4
), pp.
244
251
.
17.
Davies
,
J. C.
, Bonde, J., Logadóttir, Á., Nørskov, J. K., and Chorkendorff, I.,
2005
, “
The Ligand Effect: CO Desorption From Pt/Ru Catalysts
,”
Fuel Cells
,
5
(
4
), pp.
429
435
.10.1002/fuce.200400076
18.
Davies
,
J. C.
,
Tsotridis
,
G.
,
Varlam
,
M.
,
Valkiers
,
S.
,
Berglund
,
M.
, and
Taylor
,
P.
,
2010
, “
SSITKA Investigation of CO and H2 Competitive Adsorption at PEM Fuel Cell Anode Catalysts
,”
Int. J. Mass Spectrom.
,
291
(
3
), pp.
152
158
.10.1016/j.ijms.2010.02.003
19.
Pitois
,
A.
,
Davies
,
J. C.
,
Pilenga
,
A.
,
Pfrang
,
A.
, and
Tsotridis
,
G.
,
2009
, “
Kinetic Study of CO Desorption From PtRu/C PEM Fuel Cell Anodes: Temperature Dependence and Associated Microstructural Transformations
,”
J. Catal.
,
265
(
2
), pp.
199
208
.10.1016/j.jcat.2009.05.004
20.
Pitois
,
A.
,
Pilenga
,
A.
,
Pfrang
,
A.
, and
Tsotridis
,
G.
,
2011
, “
Temperature-Dependent CO Desorption Kinetics on Supported Gold Nanoparticles: Relevance to Clean Hydrogen Production and Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
36
(
7
), pp.
4375
4385
.10.1016/j.ijhydene.2010.12.123
21.
Pitois
,
A.
,
Pilenga
,
A.
,
Pfrang
,
A.
,
Tsotridis
,
G.
,
Abrams
,
B. L.
, and
Chorkendorff
,
I.
,
2010
, “
Temperature Dependence of CO Desorption Kinetics at a Novel Pt-on-Au/C PEM Fuel Cell Anode
,”
Chem.Eng. J.
,
162
(
1
), pp.
314
321
.10.1016/j.cej.2010.05.002
22.
Pitois
,
A.
,
Pilenga
,
A.
, and
Tsotridis
,
G.
,
2010
, “
CO Desorption Kinetics at Concentrations and Temperatures Relevant to PEM Fuel Cells Operating With Reformate Gas and PtRu/C Anodes
,”
Appl. Catal. A
,
374
(
1–2
), pp.
95
102
.10.1016/j.apcata.2009.11.034
23.
Davies
,
J. C.
, Nielsen, R. M., Thomsen, L. B., Chorkendorff, I., Logadóttir, Á., Lodziana, Z., Nørskov, J. K., Li, W. X., Hammer, B., Longwitz, S. R., Schnadt, J., Vestergaard, E. K., Vang, R. T., and Besenbacher, F.,
2004
, “
CO Desorption Rate Dependence on CO Partial Pressure Over Platinum Fuel Cell Catalysts
,”
Fuel Cells
,
4
(
4
), pp.
309
319
.10.1002/fuce.200400046
24.
Jacobs
,
G.
and
Davis
,
B. H.
,
2010
, “
Surface Interfaces in Low Temperature Water-Gas Shift: The Metal Oxide Synergy, the Assistance of Co-Adsorbed Water, and Alkali Doping
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3522
3536
.10.1016/j.ijhydene.2010.01.055
25.
Kim
,
S. H.
,
Chung
,
J. H.
,
Kim
,
Y. T.
,
Han
,
J.
,
Yoon
,
S. P.
,
Nam
,
S. W.
,
Lim
,
T.-H.
, and
Lee
,
H.-I.
,
2010
, “
SiO2/Ni and CeO2/Ni Catalysts for Single-Stage Water Gas Shift Reaction
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
3136
3140
.10.1016/j.ijhydene.2009.09.091
26.
Vignatti
,
C.
,
Avila
,
M. S.
,
Apesteguía
,
C. R.
, and
Garetto
,
T. F.
,
2010
, “
Catalytic and DRIFTS Study of the WGS Reaction on Pt-Based Catalysts
,”
Int. J. Hydrogen Energy
,
35
(
14
), pp.
7302
7312
.10.1016/j.ijhydene.2010.04.180
27.
Zhang
,
J.
and
Datta
,
R.
,
2002
, “
Sustained Potential Oscillations in Proton Exchange Membrane Fuel Cells With PtRu as Anode Catalyst
,”
J. Electrochem. Soc.
,
149
(
11
), pp.
A1423
A1431
.10.1149/1.1511752
28.
Xu
,
M.
and
Iglesia
,
E.
,
1998
, “
Readsorption and Adsorption-Assisted Desorption of CO2 on Basic Solids
,”
J. Phys. Chem. B
,
102
(
6
), pp.
961
966
.10.1021/jp972200b
You do not currently have access to this content.