Different experimental and analytical techniques namely steady state galvanometric study and electrochemical impedance spectroscopy (EIS) are employed to generate rule sets for identification of the acid drying and dilution phenomena in a phosphoric acid fuel cell (PAFC). The slope of steady state current versus voltage is used as a performance marker. A new parameter Δ, which signifies the net moisture transport in PAFC, is introduced and evaluated from the experimental data to locate the regimes of electrolyte dilution and drying. Based on these two parameters, the performance of a PAFC is mapped on the plane of operating variables. Performance decay at higher cell temperature and lower humidifier temperature (below 60 °C) signifies acid drying; on the contrary the same at lower cell temperature and higher humidifier temperature is attributed to acid dilution. EIS is employed by imposing a sinusoidal potential excitation on steady state DC load and the shift of maximum phase angle position in the frequency spectrum is used as a diagnostic marker. Results show absence of peak in the domain of positive frequency for acid drying condition, while acid dilution causes the peak to be shifted at higher frequency value. Electrochemical timescales estimated from EIS increases by many order of magnitudes compared to that in a normal PAFC, when electrolyte drying occurs. The results obtained from EIS analysis are in agreement with the performance mapping based on galvanometric steady analysis. The results are significant in context of water management and humidity control in a PAFC. The tools and parameters introduced in the present publication show promising potential to map the performance and SOH of a PAFC on the plane of various operating variables. Results and logics revealed are of significance in development of inferential model for the online optimization of PAFC.

References

1.
Barthelemy
,
R. R.
,
1981
, “
Defense Applications of Fuel Cells
,”
Proceedings of the Symposium on Fuel Cells: Technology Status and Applications
,
Chicago, IL
, November 16–18, Institute of Gas Technology, Chicago, Vol. A82-45318, pp.
109–115
.
2.
Perry
,
M. L.
,
Newman
,
J.
, and
Cairns
,
E. J.
,
1988
, “
Mass Transport in Gas Diffusion Electrodes: A Diagnostic Tool for Fuel Cell Cathode
,”
J. Electrochem. Soc.
,
145
(
1
), pp.
5
15
.10.1149/1.1838202
3.
Choudhury
,
S.
Roy,
Deshmukh
,
M. B.
, and
Rengaswamy
R.
,
2002
, “
A Two-Dimensional Steady-State Model for Phosphoric Acid Fuel Cells (PAFC)
,”
J. Power Sources
,
112
(
1
), pp.
137
152
.10.1016/S0378-7753(02)00369-5
4.
Carlson
,
E.
,
Zogg
,
R.
,
Sriramulu
,
S.
,
Roth
,
K.
, and
Brodrick
,
J.
,
2007
, “
Using Phosphoric Acid Fuel Cells for Distributed Generation
,”
ASHRAE J.
,
50
, pp.
50
51
.
5.
Basu, S.,
2007
,
Recent Trends in Fuel Cell Science and Technology
,
Springer
,
New York.
6.
He
,
W.
,
Lin
,
G.
, and
Nguyen
,
T. V.
,
2003
, “
Diagnostic Tool to Detect Electrode Flooding in Proton-Exchange-Membrane Fuel Cells
,”
AIChE J.
,
49
(
12
), pp.
3221
3228
.10.1002/aic.690491221
7.
Dokkar
,
B.
,
Settou
,
N. E.
,
Imine
,
O.
,
Saifi
,
N.
,
Negrou
,
B.
, and
Nemouchi
,
Z.
,
2011
, “
Simulation of Species Transport and Water Management in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
6
), pp.
4220
4227
.10.1016/j.ijhydene.2010.09.060
8.
Rubio
,
M. A.
,
Urquia
,
A.
, and
Dormido
S.
,
2010
, “
Diagnosis of Performance Degradation Phenomena in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
2586
2590
.10.1016/j.ijhydene.2009.03.054
9.
Mench
,
M. M.
,
Dong
,
Q. L.
, and
Wang
,
C. Y.
,
2003
, “
In Situ Water Distribution Measurements in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
124
(
1
), pp.
90
98
.10.1016/S0378-7753(03)00617-7
10.
Gorgun
,
H.
,
Arcak
,
M.
, and
Barbir
,
F.
,
2006
, “
An Algorithm for Estimation of Membrane Water Content in PEM Fuel Cells
,”
J. Power Sources
,
157
(
1
), pp.
389
394
.10.1016/j.jpowsour.2005.07.053
11.
Rourkea
,
J. O.
,
Ramani
,
M.
, and
Arcak
,
M.
,
2009
, “
In Situ Detection of Anode Flooding of a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6765
6770
.10.1016/j.ijhydene.2009.06.029
12.
Fouquet
,
N.
,
Doulet
,
C.
,
Nouillant
,
C.
,
Dauphin-Tanguy
,
G.
, and
Ould- Bouamama
,
B.
,
2006
, “
Model Based PEM Fuel Cell State-of-Health Monitoring Via ac Impedance Measurements
,”
J. Power Sources
,
159
(
2
), pp.
905
913
.10.1016/j.jpowsour.2005.11.035
13.
Higier
,
A.
, and
Liu
,
H.
,
2010
, “
Optimization of PEM Fuel Cell Flow Field Via Local Current Density Measurement
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
2144
2150
.10.1016/j.ijhydene.2009.12.116
14.
Li
,
W.
,
Zhou
,
W.
,
Li
,
H.
,
Zhou
,
Z.
,
Zhou
,
B.
,
Sun
,
G.
, and
Xin
,
Q.
,
2004
, “
Nano-Structured Pt–Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
49
(
7
), pp.
1045
1055
.10.1016/j.electacta.2003.10.015
15.
Steiner
,
N. Y.
,
Hissel
,
D.
,
Mocoteguy
,
P.
, and
Candusso
D.
,
2011
, “
Diagnosis of Polymer Electrolyte Fuel Cells Failure Modes (Flooding & Drying Out) by Neural Networks Modeling
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3067
3075
.10.1016/j.ijhydene.2010.10.077
16.
Lee
,
S. Y.
,
Ogawa
,
A.
,
Kanno
,
M.
,
Nakamoto
,
H.
,
Yasuda
,
T.
, and
Watanabe
,
M.
,
2010
, “
Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids
,”
JACS
,
132
(
28
), pp.
9764
9773
.10.1021/ja102367x
17.
Shim
,
J. C.
, and
Lee
,
J. S.
,
2000
, “
Development of Electrode Structure and Analysis of Electrode Pore Distributions in Phosphoric Acid Fuel Cells
,”
Mater. Chem. Phys.
,
63
(
2
), pp.
133
138
.10.1016/S0254-0584(99)00210-2
18.
Alderucci
,
V.
,
Recupero
,
V.
,
Pino
,
L.
,
Leonardo
,
D. R.
,
Cocke
,
D. L.
,
Giordano
,
N.
, and
Parmigiani
,
F.
,
1990
, “
Characterization of the Morphological Modification Induced by Long Term Operations on Phosphoric Acid Fuel Cell (PAFC) Electrodes
,”
J. Appl. Electrochem.
20
(
5
), pp.
811
817
.10.1007/BF01094311
19.
Hirata
,
H.
,
Aoki
,
T.
, and
Nakajima
,
K.
,
2011
, “
Numerical Study on the Evaporative and Condensational Dissipation of Phosphoric Acid in PAFC
,”
J. Power Sources
,
196
(
19
), pp.
8004
8011
.10.1016/j.jpowsour.2011.05.018
20.
Choudhury
,
S.
Roy, and
Rengaswamy
,
R.
,
2006
, “
Characterization and Fault Diagnosis of PAFC Cathode by EIS Technique and a Novel Mathematical Model Approach
,”
J. Power Sources
,
161
(
2
), pp.
971
986
.10.1016/j.jpowsour.2006.05.005
21.
Song
,
R. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
,
2000
, “
Effects of Flow Rate and Starvation of Reactant Gases on the Performance of Phosphoric Acid Fuel Cells
,”
J. Power Sources
,
86
(
1–2
), pp.
289
293
.10.1016/S0378-7753(99)00450-4
22.
Saito
,
T.
,
Nishioka
,
M.
,
Itoh
,
Y.
,
Miyake
,
Y.
,
Murakami
,
S.
, and
Furukawa
,
N.
,
1992
, “
Study of Electrolyte Management in Phosphoric Acid Fuel Cells
,”
J. Power Sources
,
37
(
3
), pp.
347
354
.10.1016/0378-7753(92)85018-6
23.
Bevers
,
D.
,
Wohr
,
M.
,
Yasuda
,
K.
, and
Oguru
,
K.
,
1997
, “
Simulation of a Polymer Electrolyte Fuel Cell Electrode
,”
J. Appl. Electrochem.
,
27
(
11
), pp.
1254
64
.10.1023/A:1018488021355
24.
Schneider
,
I. A.
,
Kuhn
,
H.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
,
2005
, “
Study of Water Balance in a Polymer Electrolyte Fuel Cell by Locally Resolved Impedance Spectroscopy Batteries, Fuel Cells, and Energy Conversion
,”
J. Electrochem. Soc.
,
152
(
12
), pp.
A2383
A9383
.10.1149/1.2121739
25.
Iranzo
,
A.
,
Muñoz
,
M.
,
Pino
,
F. J.
, and
Rosa
,
F.
,
2011
, “
Non-Dimensional Analysis of PEM Fuel Cell Phenomena by Means of AC Impedance Measurements
,”
J. Power Sources
,
196
(
9
), pp.
4264
4269
.10.1016/j.jpowsour.2010.11.004
26.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
(
10
), pp.
4727
4765
.10.1021/cr020718s
27.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.10.1002/andp.19354160705
28.
Tiffée
,
E. I.
,
Weber
,
A.
, and
Schichlein
,
H.
,
2003
,
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Wiley
,
New York
.
You do not currently have access to this content.