Abstract

This paper presents a technique for tracking the high-speed motion of a multilink system using inertial measurement units (IMUs) in a new sensor arrangement, an approach which is referred to as dynamic measurements fusion. The proposed technique incorporates accelerometers with traditional gyroscopes to measure joint angular velocities, while joint angles are measured with magnetometers. Comparative studies with conventional techniques show that the proposed technique tracks the motion of a multilink system accurately at both low (0.5 m/s) and high (5 m/s) speeds. Further analysis with different levels of measurement noise demonstrates the robustness of the proposed technique and its overall capability for tracking joint angular velocities and angles.

References

1.
Craig
,
J. J.
,
1989
,
Introduction to Robotics: Mechanics and Control
,
Welsey Publishing Company
,
Reading, MA
.
2.
Xu
,
J.-X.
,
Pan
,
Y.-J.
, and
Lee
,
T.-H.
,
2000
, “
A Gain Scheduled Sliding Mode Control Scheme Using Filtering Techniques With Applications to Multilink Robotic Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
4
), pp.
641
649
.10.1115/1.1318352
3.
Sentis
,
L.
, and
Khatib
,
O.
,
2005
, “
Synthesis of Whole-Body Behaviors Through Hierarchical Control of Behavioral Primitives
,”
Int. J. Humanoid Rob.
,
2
(
4
), pp.
505
518
.10.1142/S0219843605000594
4.
Gawronski
,
W.
,
Ih
,
C.-H.
, and
Wang
,
S.
,
1995
, “
On Dynamics and Control of Multilink Flexible Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
2
), pp.
134
142
.10.1115/1.2835173
5.
Jimenez-Cano
,
A. E.
,
Martin
,
J.
,
Heredia
,
G.
,
Ollero
,
A.
, and
Cano
,
R.
,
2013
, “
Control of an Aerial Robot With Multi-Link Arm for Assembly Tasks
,”
IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
4916
4921
.10.1109/ICRA.2013.6631279
6.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
McCrory
,
S.
,
Bertrand
,
S.
,
Lee
,
I.
, and
Pratt
,
J.
,
2019
, “
Footstep Planning for Autonomous Walking Over Rough Terrain
,” IEEE-RAS 19th International Conference on Humanoid Robots (
Humanoids
), Toronto, ON, Canada, Oct. 15-17, pp.
9
16
.10.1109/Humanoids43949.2019.9035046
7.
Steckenrider
,
J. J.
, and
Furukawa
,
T.
,
2020
, “
A Probabilistic Model-Adaptive Approach for Tracking of Motion With Heightened Uncertainty
,”
Int. J. Control, Autom. Syst.
,
18
(
10
), pp.
2687
2698
.10.1007/s12555-019-0697-x
8.
Cotton
,
S.
,
Murray
,
A. P.
, and
Fraisse
,
P.
,
2009
, “
Estimation of the Center of Mass: From Humanoid Robots to Human Beings
,”
IEEE/ASME Trans. Mech.
,
14
(
6
), pp.
707
712
.10.1109/TMECH.2009.2032687
9.
Mirek
,
E.
,
Kubica
,
J.
,
Szymura
,
J.
,
Pasiut
,
S.
,
Rudzińska
,
M.
, and
Chwała
,
W.
,
2016
, “
Assessment of Gait Therapy Effectiveness in Patients With Parkinson's Disease on the Basis of Three-Dimensional Movement Analysis
,”
Front. Neurol.
,
7
, pp.
102
102
.10.3389/fneur.2016.00102
10.
Müller
,
B.
,
Ilg
,
W.
,
Giese
,
M. A.
, and
Ludolph
,
N.
,
2017
, “
Validation of Enhanced Kinect Sensor Based Motion Capturing for Gait Assessment
,”
PLoS One
,
12
(
4
), p.
e0175813
.10.1371/journal.pone.0175813
11.
Paez-Granados
,
D. F.
,
Kadone
,
H.
,
Hassan
,
M.
,
Chen
,
Y.
, and
Suzuki
,
K.
,
2022
, “
Personal Mobility With Synchronous Trunk–Knee Passive Exoskeleton: Optimizing Human–Robot Energy Transfer
,”
IEEE/ASME Trans. Mech.
,
27
(
5
), pp.
3613
3623
.10.1109/TMECH.2021.3135453
12.
Guihard
,
M.
, and
Gorce
,
P.
,
2001
, “
Tracking of High Acceleration Movements With a Pneumatic Impedance Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
3
), pp.
549
551
.10.1115/1.1371773
13.
Pueo
,
B.
, and
Jimenez-Olmedo
,
J. M.
,
2017
, “
Application of Motion Capture Technology for Sport Performance Analysis
,”
Retos
,
32
(
32
), pp.
241
247
.10.47197/retos.v0i32.56072
14.
Macias
,
M. E. G.
,
Angulo
,
C. V.
,
Millan
,
E. M. A.
, and
Gonzalez
,
K. R. K.
,
2022
, “
Biomechanics Assessment of Kinematic Parameters of Low-Sprint Start in High-Performance Athletes Using Three Dimensional Motion Capture System
,”
Mexican J. Biomed. Eng.
,
43
(
1
), pp.
52
64
.10.17488/RMIB.43.1.5
15.
Furukawa
,
T.
,
Steckenrider
,
J. J.
, and
Dissanayake
,
G.
,
2021
, “
State Estimation of a Partially Observable Multi-Link System With No Joint Encoders Incorporating External Dead-Reckoning
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Prague, Czech Republic, Sept. 27–Oct. 1, pp.
7342
7348
.10.1109/IROS51168.2021.9636132
16.
Zaseck
,
L. W.
,
Bonifas
,
A. C.
,
Miller
,
C. S.
,
Orton
,
N. R.
,
Reed
,
M. P.
,
Demetropoulos
,
C. K.
,
Ott
,
K. A.
,
Dooley
,
C. J.
,
Kuo
,
N. P.
,
Strohsnitter
,
L. M.
,
Andrist
,
J. R.
,
Luongo
,
M. E.
,
Drewry
,
D. G.
,
Merkle
,
A. C.
, and
Rupp
,
J. D.
,
2019
, “
Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading Conditions
,”
Stapp Car Crash J.
,
63
, pp.
235
266
.10.4271/2019-22-0010
17.
Xu
,
T.
,
Sheng
,
X.
,
Zhang
,
T.
,
Liu
,
H.
,
Liang
,
X.
, and
Ding
,
A.
,
2018
, “
Development and Validation of Dummies and Human Models Used in Crash Test
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
12
.10.1155/2018/3832850
18.
Zhang
,
W.
,
Furukawa
,
T.
,
Nakata
,
A.
, and
Hashimoto
,
T.
,
2022
, “
Localization of Stereovision for Measuring in-Crash Toeboard Deformation
,”
Sensors
,
22
(
8
), p.
2962
.10.3390/s22082962
19.
Hartley
,
R.
, and
Zisserman
,
A.
,
2003
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge, UK
.
20.
van der Krogt
,
M. M.
,
Delp
,
S. L.
, and
Schwartz
,
M. H.
,
2012
, “
How Robust is Human Gait to Muscle Weakness?
,”
Gait Posture
,
36
(
1
), pp.
113
119
.10.1016/j.gaitpost.2012.01.017
21.
Minh
,
V. T.
,
Tamre
,
M.
,
Musalimov
,
V.
,
Kovalenko
,
P.
,
Rubinshtein
,
I.
,
Ovchinnikov
,
I.
,
Krcmarik
,
D.
,
Moezzi
,
R.
, and
Hlava
,
J.
,
2020
, “
Model Predictive Control for Modeling Human Gait Motions Assisted by Vicon Technology
,”
J. Européen Des Systèmes Automatisés (JESA)
,
53
(
5
), pp.
589
600
.10.18280/jesa.530501
22.
Begon
,
M.
,
Andersen
,
M. S.
, and
Dumas
,
R.
,
2018
, “
Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
030801
.10.1115/1.4038741
23.
Pfister
,
A.
,
West
,
A. M.
,
Bronner
,
S.
, and
Noah
,
J. A.
,
2014
, “
Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait Analysis
,”
J. Med. Eng. Technol.
,
38
(
5
), pp.
274
280
.10.3109/03091902.2014.909540
24.
Segura
,
M. E.
,
Coronado
,
E.
,
Maya
,
M.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2016
, “
Analysis of Recoverable Falls Via Microsoft Kinect: Identification of Third-Order Ankle Dynamics
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p. 091006.10.1115/1.4032878
25.
Jung
,
P.-G.
,
Oh
,
S.
,
Lim
,
G.
, and
Kong
,
K.
,
2014
, “
A Mobile Motion Capture System Based on Inertial Sensors and Smart Shoes
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
1
), p. 011002.10.1115/1.4025207
26.
Taetz
,
B.
,
Bleser
,
G.
, and
Miezal
,
M.
,
2016
, “
Towards Self-Calibrating Inertial Body Motion Capture
,” 19th International Conference on Information Fusion (
FUSION
), Heidelberg, Germany, pp.
1751
1759
.10.48550/arXiv.1606.03754
27.
Kok
,
M.
,
Hol
,
J. D.
, and
Schön
,
T. B.
,
2014
, “
An Optimization-Based Approach to Human Body Motion Capture Using Inertial Sensors
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
79
85
.10.3182/20140824-6-ZA-1003.02252
28.
Bagalà
,
F.
,
Fuschillo
,
V. L.
,
Chiari
,
L.
, and
Cappello
,
A.
,
2012
, “
Calibrated 2D Angular Kinematics by Single-Axis Accelerometers: From Inverted Pendulum to N-Link Chain
,”
IEEE Sens. J.
,
12
(
3
), pp.
479
486
.10.1109/JSEN.2011.2107897
29.
Caroselli
,
A.
,
Bagalà
,
F.
, and
Cappello
,
A.
,
2013
, “
Quasi-Real Time Estimation of Angular Kinematics Using Single-Axis Accelerometers
,”
Sensors
,
13
(
1
), pp.
918
937
.10.3390/s130100918
30.
He
,
P.
, and
Cardou
,
P.
,
2012
, “
Estimating the Angular Velocity From Body-Fixed Accelerometers
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
6
), p.
061015
.10.1115/1.4006364
31.
Roetenberg
,
D.
,
Luinge
,
H.
, and
Slycke
,
P.
,
2009
,
Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors
,
Xsens Motion Technology
, Xsens Motion Technologies BV, Report No. 1.
32.
Bevly
,
D. M.
,
2004
, “
Global Positioning System (GPS): A Low-Cost Velocity Sensor for Correcting Inertial Sensor Errors on Ground Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
2
), pp.
255
264
.10.1115/1.1766027
33.
Steckenrider
,
J. J.
,
Crawford
,
B.
, and
Zheng
,
P.
,
2021
, “
GPS and IMU Fusion for Human Gait Estimation
,” IEEE 24th International Conference on Information Fusion (
FUSION
), Sun City, South Africa, Nov. 1–4, pp.
1
7
.10.23919/FUSION49465.2021.9627008
34.
Nguyen
,
T.
,
Mann
,
G. K.
,
Vardy
,
A.
, and
Gosine
,
R. G.
,
2019
, “
Developing Computationally Efficient Nonlinear Cubature Kalman Filtering for Visual Inertial Odometry
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
8
), p. 081012.10.1115/1.4042951
35.
Deilamsalehy
,
H.
,
Havens
,
T. C.
, and
Manela
,
J.
,
2017
, “
Heterogeneous Multisensor Fusion for Mobile Platform Three-Dimensional Pose Estimation
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
071002
.10.1115/1.4035452
36.
Hellmers
,
H.
,
Norrdine
,
A.
,
Blankenbach
,
J.
, and
Eichhorn
,
A.
,
2013
, “
An IMU/Magnetometer-Based Indoor Positioning System Using Kalman Filtering
,”
International Conference on Indoor Positioning and Indoor Navigation
, Montbeliard, France, Oct. 28–31, pp.
1
9
.10.1109/IP IN.2013.6817887
37.
Psiaki
,
M. L.
,
Martel
,
F.
, and
Pal
,
P. K.
,
1990
, “
Three-Axis Attitude Determination Via Kalman Filtering of Magnetometer Data
,”
J. Guid. Control, Dyn.
,
13
(
3
), pp.
506
514
.10.2514/3.25364
38.
Poddar
,
S.
,
Kumar
,
V.
, and
Kumar
,
A.
,
2017
, “
A Comprehensive Overview of Inertial Sensor Calibration Techniques
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
1
), p. 011006.10.1115/1.4034419
39.
Shuster
,
M. D.
, and
Oh
,
S. D.
,
1981
, “
Three-Axis Attitude Determination From Vector Observations
,”
J. Guid. Control
,
4
(
1
), pp.
70
77
.10.2514/3.19717
40.
Chung
,
J.
,
Donahoe
,
M.
,
Schmandt
,
C.
,
Kim
,
I.-J.
,
Razavai
,
P.
, and
Wiseman
,
M.
,
2011
, “
Indoor Location Sensing Using Geo-Magnetism
,”
Proceedings of Ninth International Conference on Mobile Systems, Applications, and Services
, Bethesda, MD, pp.
141
154
.10.1145/1999995.2000010
41.
Yun
,
X.
,
Bachmann
,
E. R.
, and
McGhee
,
R. B.
,
2008
, “
A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements
,”
IEEE Trans. Instrument. Meas.
,
57
(
3
), pp.
638
650
.10.1109/TIM.2007.911646
42.
Kang
,
D.
,
Jang
,
C.
, and
Park
,
F. C.
,
2019
, “
Unscented Kalman Filtering for Simultaneous Estimation of Attitude and Gyroscope Bias
,”
IEEE/ASME Trans. Mech.
,
24
(
1
), pp.
350
360
.10.1109/TMECH.2019.2891776
43.
Troni
,
G.
, and
Whitcomb
,
L. L.
,
2019
, “
Field Sensor Bias Calibration With Angular-Rate Sensors: Theory and Experimental Evaluation With Application to Magnetometer Calibration
,”
IEEE/ASME Trans. Mech.
,
24
(
4
), pp.
1698
1710
.10.1109/TMECH.2019.2920367
44.
Lee
,
T. N.
, and
Canciani
,
A. J.
,
2020
, “
MagSLAM: Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field
,”
Navigation
,
67
(
1
), pp.
95
107
.10.1002/navi.352
45.
Yuan
,
Q.
,
Asadi
,
E.
,
Lu
,
Q.
,
Yang
,
G.
, and
Chen
,
I.-M.
,
2019
, “
Uncertainty-Based IMU Orientation Tracking Algorithm for Dynamic Motions
,”
IEEE/ASME Trans. Mech.
,
24
(
2
), pp.
872
882
.10.1109/TMECH.2019.2892069
46.
Steckenrider
,
J. J.
,
2022
, “
Adaptive Aerial Localization Using Lissajous Search Patterns
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2094
2113
.10.1109/TRO.2021.3126225
47.
Welch
,
G.
, and
Bishop
,
G.
,
1995
,
An Introduction to the Kalman Filter
, University of North Carolina,
Chapel Hill, NC
.
48.
Zhao
,
H.
, and
Wang
,
Z.
,
2012
, “
Motion Measurement Using Inertial Sensors, Ultrasonic Sensors, and Magnetometers With Extended Kalman Filter for Data Fusion
,”
IEEE Sens. J.
,
12
(
5
), pp.
943
953
.10.1109/JSEN.2011.2166066
49.
Schiefer
,
C.
,
Ellegast
,
R. P.
,
Hermanns
,
I.
,
Kraus
,
T.
,
Ochsmann
,
E.
,
Larue
,
C.
, and
Plamondon
,
A.
,
2014
, “
Optimization of Inertial Sensor-Based Motion Capturing for Magnetically Distorted Field Applications
,”
ASME J. Biomech. Eng.
,
136
(
12
), p.
121008
.10.1115/1.4028822
50.
Steckenrider
,
J. J.
, and
Furukawa
,
T.
,
2020
, “
Multi-Dimensional Belief Fusion of multi-Gaussian Structures
,”
Inf. Fusion
,
57
, pp.
71
88
.10.1016/j.inffus.2019.12.006
51.
Skog
,
I.
,
Nilsson
,
J.-O.
,
Händel
,
P.
, and
Nehorai
,
A.
,
2016
, “
Inertial Sensor Arrays, Maximum Likelihood, and Cramér–Rao Bound
,”
IEEE Trans. Signal Process.
,
64
(
16
), pp.
4218
4227
.10.1109/TSP.2016.2560136
52.
Vikas
,
V.
, and
Crane
,
C. D.
, III
,
2016
, “
Joint Angle Measurement Using Strategically Placed Accelerometers and Gyroscope
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021003
.10.1115/1.4031299
53.
Weygers
,
I.
,
Kok
,
M.
,
De Vroey
,
H.
,
Verbeerst
,
T.
,
Versteyhe
,
M.
,
Hallez
,
H.
, and
Claeys
,
K.
,
2020
, “
Drift-Free Inertial Sensor-Based Joint Kinematics for Long-Term Arbitrary Movements
,”
IEEE Sens. J.
,
20
(
14
), pp.
7969
7979
.10.1109/JSEN.2020.2982459
54.
Woods
,
C.
, and
Vikas
,
V.
,
2022
, “
Joint Angle Estimation Using Accelerometer Arrays and Model-Based Filtering
,”
IEEE Sens. J.
,
22
(
20
), pp.
19786
19796
.10.1109/JSEN.2022.3200251
55.
Nilsson
,
J.-O.
, and
Skog
,
I.
,
2016
, “
Inertial Sensor Arrays-A Literature Review
,” European Navigation Conference (
ENC
), Helsinki, Finland, May 30–June 2, pp.
1
10
.10.1109/EURONAV.2016.7530551
56.
Cheng
,
P.
, and
Oelmann
,
B.
,
2010
, “
Joint-Angle Measurement Using Accelerometers and Gyroscopes-a Survey
,”
IEEE Trans. Instrum. Meas.
,
59
(
2
), pp.
404
414
.10.1109/TIM.2009.2024367
You do not currently have access to this content.