Abstract

This paper proposes an offset-free Quasi-Infinite Horizon Nonlinear Model Predictive Controller (QIH-NMPC) using online parameter adaptation. In the proposed method, the adaptation law is modeled by a first order differential equation as a function of the tracking error and subsequently combined with a QIH-NMPC algorithm for online updating of the unknown parameter. The effectiveness of the proposed control scheme is demonstrated on a continuous stirred tank reactor (CSTR) and an experimental cascaded three-tank system with uncertain model parameters, structural plant/model mismatch and noisy measurements. For the purpose of comparison, the state-of-the-art online state and parameter estimators such as moving horizon estimation (MHE) and extended Kalman filter (EKF) were also incorporated into QIH-NMPC algorithm. The simulation and experimental results obtained showed the efficacy of the proposed adaptation scheme as it demonstrated a comparable performance to standard estimators (MHE and EKF) although with a lesser computational time.

References

1.
Magni
,
L.
,
De Nicolao
,
G.
, and
Scattolini
,
R.
,
2001
, “
Output Feedback and Tracking of Nonlinear Systems With Model Predictive Control
,”
Automatica
,
37
(
10
), pp.
1601
1607
.10.1016/S0005-1098(01)00102-9
2.
González
,
A. H.
,
Adam
,
E. J.
, and
Marchetti
,
J. L.
,
2008
, “
Conditions for Offset Elimination in State Space Receding Horizon Controllers: A Tutorial Analysis
,”
Chem. Eng. Process.: Process Intensif.
,
47
(
12
), pp.
2184
2194
.10.1016/j.cep.2007.11.011
3.
Maeder
,
U.
, and
Morari
,
M.
,
2010
, “
Offset-Free Reference Tracking With Model Predictive Control
,”
Automatica
,
46
(
9
), pp.
1469
1476
.10.1016/j.automatica.2010.05.023
4.
Rao
,
C. V.
, and
Rawlings
,
J. B.
,
1999
, “
Steady States and Constraints in Model Predictive Control
,”
AIChE J.
,
45
(
6
), pp.
1266
1278
.10.1002/aic.690450612
5.
Muske
,
K. R.
, and
Badgwell
,
T. A.
,
2002
, “
Disturbance Modeling for Offset-Free Linear Model Predictive Control
,”
J. Process Control
,
12
(
5
), pp.
617
632
.10.1016/S0959-1524(01)00051-8
6.
Pannocchia
,
G.
, and
Rawlings
,
J. B.
,
2003
, “
Disturbance Models for Offset-Free Model Predictive Control
,”
AIChE J.
,
49
(
2
), pp.
426
437
.10.1002/aic.690490213
7.
Pannocchia
,
G.
,
2003
, “
Robust Disturbance Modeling for Model Predictive Control With Application to Multivariable Ill-Conditioned Processes
,”
J. Process Control
,
13
(
8
), pp.
693
701
.10.1016/S0959-1524(02)00134-8
8.
Pannocchia
,
G.
, and
Bemporad
,
A.
,
2007
, “
Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control
,”
IEEE Trans Autom. Control
,
52
(
6
), pp.
1048
1053
.10.1109/TAC.2007.899096
9.
Huang
,
R.
,
Patwardhan
,
S. C.
, and
Biegler
,
L. T.
,
2009
, “
Robust Extended Kalman Filter Based Nonlinear Model Predictive Control Formulation
,”
48th IEEE Conference on Decision and Control Held Jointly With 2009 28th Chinese Control Conference
, IEEE, Shanghai, China, Dec. 15–18, pp.
8046
8051
.10.1109/CDC.2009.5400421
10.
Huang
,
R.
,
Biegler
,
L. T.
, and
Patwardhan
,
S. C.
,
2010
, “
Fast Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation
,”
Ind. Eng. Chem. Res.
,
49
(
17
), pp.
7882
7890
.10.1021/ie901945y
11.
Park
,
B. J.
,
Kim
,
Y.
, and
Lee
,
J. M.
,
2021
, “
Design of Switching Multilinear Model Predictive Control Using Gap Metric
,”
Comput. Chem. Eng.
,
150
, p.
107317
.10.1016/j.compchemeng.2021.107317
12.
Meadows
,
E.
, and
Rawlings
,
J. B.
,
1997
, “
Model Predictive Control
,”
Nonlinear Process Control
,
M.
Henson
and
D. H.
Seborg
,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
233
310
.
13.
Bequette
,
B. W.
,
2007
, “
Non-Linear Model Predictive Control, a Personal Retrospective
,”
Can. J. Chem. Eng.
,
85
(
4
), pp.
408
415
.10.1002/cjce.5450850403
14.
Patwardhan
,
A. A.
,
Rawlings
,
J. B.
, and
Edgar
,
T. F.
,
1990
, “
Nonlinear Model Predictive Control
,”
Chem. Eng. Commun.
,
87
(
1
), pp.
123
141
.10.1080/00986449008940687
15.
Lee
,
J. H.
, and
Ricker
,
N. L.
,
1994
, “
Extended Kalman Filter Based Nonlinear Model Predictive Control
,”
Ind. Eng. Chem. Res.
,
33
(
6
), pp.
1530
1541
.10.1021/ie00030a013
16.
Huang
,
R.
,
Patwardhan
,
S. C.
, and
Biegler
,
L. T.
,
2012
, “
Robust Stability of Nonlinear Model Predictive Control Based on Extended Kalman Filter
,”
J. Process Control
,
22
(
1
), pp.
82
89
.10.1016/j.jprocont.2011.10.006
17.
Morari
,
M.
, and
Maeder
,
U.
,
2012
, “
Nonlinear Offset-Free Model Predictive Control
,”
Automatica
,
48
(
9
), pp.
2059
2067
.10.1016/j.automatica.2012.06.038
18.
Caspari
,
A.
,
Djelassi
,
H.
,
Mhamdi
,
A.
,
Biegler
,
L. T.
, and
Mitsos
,
A.
,
2021
, “
Semi-Infinite Programming Yields Optimal Disturbance Model for Offset-Free Nonlinear Model Predictive Control
,”
J. Process Control
,
101
, pp.
35
51
.10.1016/j.jprocont.2021.03.005
19.
Das
,
B.
, and
Mhaskar
,
P.
,
2015
, “
Lyapunov-Based Offset Free Model Predictive Control of Nonlinear Process Systems
,”
Can. J. Chem. Eng.
,
93
(
3
), pp.
471
478
.10.1002/cjce.22134
20.
Tatjewski
,
P.
, and
Lawrynczuk
,
M.
,
2020
, “
Algorithms With State Estimation in Linear and Nonlinear Model Predictive Control
,”
Comput. Chem. Eng.
,
143
, p.
107065
.10.1016/j.compchemeng.2020.107065
21.
Rangaiah
,
G. P.
,
Saha
,
P.
, and
Tade
,
M. O.
,
2002
, “
Nonlinear Model Predictive Control of an Industrial Four-Stage Evaporator System Via Simulation
,”
Chem. Eng. J.
,
87
(
3
), pp.
285
299
.10.1016/S1385-8947(01)00240-6
22.
Lakshmi Narayanan
,
N. R.
,
Krishnaswamy
,
P. R.
, and
Rangaiah
,
G. P.
,
1997
, “
An Adaptive Internal Model Control Strategy for pH Neutralization
,”
Chem. Eng. Sci.
,
52
(
18
), pp.
3067
3074
.10.1016/S0009-2509(97)00130-9
23.
Hu
,
Q.
, and
Rangaiah
,
G. P.
,
1999
, “
Adaptive Internal Model Control of Nonlinear Processes
,”
Chem. Eng. Sci.
,
54
(
9
), pp.
1205
1220
.10.1016/S0009-2509(98)00543-0
24.
Shukla
,
N. V.
,
Deshpande
,
P. B.
,
Ravi Kumar
,
V.
, and
Kulkarni
,
B. D.
,
1993
, “
Enhancing the Robustness of Internal Model Based Nonlinear pH Controller
,”
Chem. Eng. Sci.
,
48
(
5
), pp.
913
920
.10.1016/0009-2509(93)80329-O
25.
Al Seyab
,
R. K. S.
,
2006
,
Nonlinear Model Predictive Control Using Automatic Differentiation
,
Cranfield University, Cranfield, UK
.
26.
Ebirim
,
K. U.
,
Lecchini-Visintini
,
A.
,
Rubagotti
,
M.
, and
Prempain
,
E.
,
2023
, “
Constrained Model Predictive Control With Integral Action for Twin Rotor MIMO Systems
,”
ASME J. Dyn. Syst. Meas. Contr.
,
145
(
8
), p.
081006
.10.1115/1.4062735
27.
Adetola
,
V.
,
DeHaan
,
D.
, and
Guay
,
M.
,
2009
, “
Adaptive Model Predictive Control for Constrained Nonlinear Systems
,”
Syst. Control Lett.
,
58
(
5
), pp.
320
326
.10.1016/j.sysconle.2008.12.002
28.
Adetola
,
V.
, and
Guay
,
M.
,
2011
, “
Robust Adaptive MPC for Constrained Uncertain Nonlinear Systems
,”
Int. J. Adapt. Control Signal Process.
,
25
(
2
), pp.
155
167
.10.1002/acs.1193
29.
Jabarivelisdeh
,
B.
,
Carius
,
L.
,
Findeisen
,
R.
, and
Waldherr
,
S.
,
2020
, “
Adaptive Predictive Control of Bioprocesses With Constraint-Based Modeling and Estimation
,”
Comput. Chem. Eng.
,
135
, p.
106744
.10.1016/j.compchemeng.2020.106744
30.
Dutta
,
L.
, and
Das
,
D. K.
,
2021
, “
An Adaptive Feedback Linearized Model Predictive Controller Design for a Nonlinear Multi-Input Multi-Output System
,”
Int. J. Adapt. Control Signal Process.
,
35
(
6
), pp.
991
1016
.10.1002/acs.3239
31.
Pipino
,
H. A.
,
Cappelletti
,
C. A.
, and
Adam
,
E. J.
,
2021
, “
Adaptive Multi-Model Predictive Control Applied to Continuous Stirred Tank Reactor
,”
Comput. Chem. Eng.
,
145
, p.
107195
.10.1016/j.compchemeng.2020.107195
32.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
33.
Pistikopoulos
,
E. N.
,
Barbosa-Povoa
,
A.
,
Lee
,
J. H.
,
Misener
,
R.
,
Mitsos
,
A.
,
Reklaitis
,
G. V.
,
Venkatasubramanian
,
V.
, et al.,
2021
, “
Process Systems Engineering –The Generation Next?
,”
Comput. Chem. Eng.
,
147
, p.
107252
.10.1016/j.compchemeng.2021.107252
34.
Mayne
,
D.
,
2013
, “
An Apologia for Stabilising Terminal Conditions in Model Predictive Control
,”
International Journal of Control
,
86
(
11
), pp.
2090
2095
.10.1080/00207179.2013.813647
35.
Chen
,
H.
, and
Allgower
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.10.1016/S0005-1098(98)00073-9
36.
Findeisen
,
R.
,
Imsland
,
L.
,
Allgower
,
F.
, and
Foss
,
B. A.
,
2003
, “
State and Output Feedback Nonlinear Model Predictive Control: An Overview
,”
Eur. J. Control
,
9
(
2–3
), pp.
190
206
.10.3166/ejc.9.190-206
37.
Das
,
B.
, and
Mhaskar
,
P.
,
2017
, “
Adaptive Output-Feedback Lyapunov-Based Model Predictive Control of Nonlinear Process Systems
,”
Int. J. Robust Adaptive control.
,
28
(
5
), pp.
1597
1609
.10.1002/rnc.3973
38.
Rajhans
,
C.
,
Patwardhan
,
S. C.
, and
Pillai
,
H.
,
2017
, “
Discrete Time Formulation of Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
7181
7186
.10.1016/j.ifacol.2017.08.602
39.
Rajhans
,
C.
,
Griffith
,
D. W.
,
Patwardhan
,
S. C.
,
Biegler
,
L. T.
, and
Pillai
,
H. K.
,
2019
, “
Terminal Region Characterization and Stability Analysis of Discrete Time Quasi-Infinite Horizon Nonlinear Model Predictive Control
,”
J. Process Control
,
83
, pp.
30
52
.10.1016/j.jprocont.2019.08.002
40.
Faanes
,
A.
, and
Skogestad
,
S.
,
2005
, “
Offset-Free Tracking of Model Predictive Control With Model Mismatch. experimental Results
,”
Ind. Eng. Chem. Res.
,
44
(
11
), pp.
3966
3972
.10.1021/ie049422y
41.
Huberman
,
B. A.
, and
Lumer
,
E.
,
1990
, “
Dynamics of Adaptive Systems
,”
IEEE Trans. Circuits Syst.
,
37
(
4
), pp.
547
550
.10.1109/31.52759
42.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
2008
,
Applied Nonlinear Control
,
Prentice Hall
,
Eaglewood Cliffs, NJ
.
43.
Allgower
,
F.
,
Badgwell
,
T. A.
,
Qin
,
J. S.
,
Rawlings
,
J. B.
, and
Wright
,
S. J.
,
1999
, “
Nonlinear Predictive Control and Moving Horizon Estimation – An Introductory Overview
,”
Advances in Control, Highlights of ECC-99
,
P. M.
Frank
, Hrsg.,
Springer
, Berlin, pp.
391
449
.
44.
Hicks
,
G. A.
, and
Ray
,
W. H.
,
1971
, “
Approximation Methods for Optimal Control Synthesis
,”
Can. J. Chem. Eng.
,
49
(
4
), pp.
522
528
.10.1002/cjce.5450490416
45.
Qu
,
C. C.
, and
Hahn
,
J.
,
2009
, “
Computation of Arrival Cost for Moving Horizon Estimation Via Unscented Kalman Filtering
,”
J. Process Control
,
19
(
2
), pp.
358
363
.10.1016/j.jprocont.2008.04.005
46.
Zang
,
Z. J.
, and
Sugiura
,
H.
,
2017
, “
Robust Nonlinear Control of a Three-Tank System in the Presence of Mismatched Uncertainties
,”
IFAC PapersOnline
,
50
, pp.
4048
4093
.10.1016/j.ifacol.2017.08.793
47.
Bamimore
,
A.
,
Osinuga
,
A. B.
,
Olaleke
,
M.
,
Adeniran
,
O.
,
Odunsi
,
O.
,
Salaudeen
,
A.
,
Owolabi
,
O. K.
, et al.,
2020
, “
Design, Fabrication and Interfacing of Cascaded Three Tank System With Microcontroller Board for Research and Education in Process Control
,”
Innovative Solution Eng.
,
3
(
1
), pp.
12
22
.
48.
Multi Tank | INTECO
,
2009
, “
On Internet
,” accessed January 12, 2022, https://www.inteco.com.pl/products/multi-tank/.
49.
Bamimore
,
A.
,
Osinuga
,
A. B.
,
Kehinde-Abajo
,
T. E.
,
Osunleke
,
A. S.
, and
Taiwo
,
O.
,
2021
, “
A Comparison of Two Artificial Neural Networks for Modeling and Predictive Control of a Cascaded Three-Tank System
,”
IFAC-PapersOnLine
,
54
(
21
), pp.
145
150
.10.1016/j.ifacol.2021.12.025
You do not currently have access to this content.