Abstract

Digital hydraulics is a new technology providing an alternative to conventional proportional or servovalve-controlled systems in the area of fluid power. Digital hydraulic applications, such as digital pumps, digital valves and actuators, switched inertance hydraulic converters (SIHCs), and digital hydraulic power management systems, promise high-energy efficiency and less contamination sensitivity. Research on digital hydraulics is driven by the need for highly energy efficient hydraulic machines but is relatively immature compared to other energy-saving technologies. This review introduces the development of SIHCs particularly focusing on the work being undertaken in the last 15 years and evaluates the device configurations, performance, and control strategies that are found in the current SIHC research. Various designs for high-speed switching valves are presented, and their advantages and limitations are compared and discussed. The current limitations of SIHCs are discussed and suggestions for the future development of SIHCs are made.

References

1.
Yuan
,
C.
,
Pan
,
M.
, and
Plummer
,
A.
,
2018
, “
A Review of Switched Inertance Hydraulic Converter Technology
,”
ASME
Paper No. FPMC2018-8829.10.1115/FPMC2018-8829
2.
Scheidl
,
R.
, and
Riha
,
G.
,
1999
, “
Energy Efficient Switching Control by a Hydraulic ‘Resonance-Converter’
,” Workshop on Power Transmission and Motion Control (PTMC'99),
C. R.
Burrows
and
K.
Edge
, eds.,
Bath, UK
, Sept. 8–10, pp.
8
11
.
3.
Gradl
,
C.
,
2017
, “
Hydraulic Stepper Drive—Conceptual Study, Design and Experiments
,” Ph.D. thesis,
Johannes Kepler University
,
Linz, Austria
.
4.
Johnston
,
D. N.
,
2009
, “
A Switched Inertance Device for Efficient Control of Pressure and Flow
,”
ASME
Paper No. DSCC2009-2535.10.1115/DSCC2009-2535
5.
Love
,
L.
,
Eric
,
L.
, and
Pete
,
A.
,
2012
, “
Estimating the Impact (Energy, Emissions and Economics) of the U.S. Fluid Power Industry
,”
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge
, TN.
6.
de Montgolfier
,
J. M.
,
1803
, “
Note on the Hydraulic Ram, and on the Method of Calculating Its Effects
,”
J. Mines
,
13
(
73
), pp.
42
51
.http://annales.ensmp.fr/articles/1802-1803-1/32-38.pdf
7.
Constantinesco
,
G.
, and
Haddon
,
W.
,
1916
, “
Hydraulic Transmission of Power; Liquid-Pressure Engines. A Motor Operated by Periodic Impulses Produced in a Liquid-Wave-Transmission
,” UK Patent No. GB109849.
8.
Dulay
,
I. K.
,
1988
, “
Fundamentals of Hydraulic Power Transmission
,” Elsevier,
Amsterdam, The Netherlands
.
9.
Brown
,
F. T.
,
1987
, “
Switched Reactance Hydraulics: A New Way to Control Fluid Power
,”
National Conference on Fluid Power
, Chicago, IL, Mar. 2–5, pp.
25
34
.
10.
Brown
,
F.
,
Tentarelli
,
S.
, and
Ramachandran
,
S.
,
1988
, “
A Hydraulic Rotary Switched-Inertance Servo-Transformer
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
144
150
.10.1115/1.3152664
11.
Liaw
,
C. J.
, and
Brown
,
F. T.
,
1990
, “
Nonlinear Dynamics of an Electrohydraulic Flapper Nozzle Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
298
304
.10.1115/1.2896139
12.
Scheidl
,
R.
,
Schindler
,
D.
,
Riha
,
G.
, and
Leitner
,
W.
,
1995
, “
Basics for the Energy-Efficient Control of Hydraulic Drives by Switching Techniques
,”
Proceedings of the Third Conference on Mechatronics and Robotics
, Paderborn, Germany, Oct. 4–6, pp.
118
131
.https://www.researchgate.net/publication/281620211_Basics_for_the_Energy-Efficient_Control_of_Hydraulic_Drives_by_Switching_Techniques
13.
Winkler
,
B.
, and
Scheidl
,
R.
,
2006
, “
Optimization of a Fast Switching Valve for Big Flow Rates
,”
Bath Workshop on Power Transmission and Motion Control
, Bath, UK, Sept. 13–15, pp.
387
399
.
14.
Winkler
,
B.
, and
Scheidl
,
R.
,
2007
, “
Development of a Fast Seat Type Switching Valve for Big Flow Rates
,”
Tenth Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 21–23, pp.
137
146
.
15.
Manhartsgruber
,
B.
,
Mikota
,
G.
, and
Scheidl
,
R.
,
2005
, “
Modelling of a Switching Control Hydraulic System
,”
Math. Comput. Modell. Dyn. Syst.
,
11
(
3
), pp.
329
344
.10.1080/13873950500076297
16.
Scheidl
,
R.
,
Kogler
,
H.
, and
Manhartsgruber
,
B.
,
2007
, “
A Cavitation Avoidance Strategy in Hydraulic Switching Control Based on a Nonlinear Oscillator
,”
Proceedings of the Tenth Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 21–23, pp.
197
210
.
17.
Kogler
,
H.
, and
Scheidl
,
R.
,
2008
, “
Two Basic Concepts of Hydraulic Switching Converters
,”
The First Workshop on Digital Fluid Power
, Tampere, Finland, Oct. 3, pp.
7
30
. https://www.researchgate.net/publication/278478099_Two_Basic_Concepts_of_Hydraulic_Switching_Converters
18.
Kogler
,
H.
,
Scheidl
,
R.
,
Ehrentraut
,
M.
,
Guglielmino
,
E.
,
Semini
,
C.
, and
Caldwell
,
D. G.
,
2010
, “
A Compact Hydraulic Switching Converter for Robotic Applications
,”
Proceedings of Fluid Power and Motion Control
, Bath, UK, Sept. 15–17, pp.
55
66
.https://www.researchgate.net/publication/278486500_A_Compact_Hydraulic_Switching_Converter_for_Robotic_Applications
19.
Guglielmino
,
E.
,
Semini
,
C.
,
Kogler
,
H.
,
Scheidl
,
R.
, and
Caldwell
,
D. G.
,
2010
, “
Power Hydraulics-Switched Mode Control of Hydraulic Actuation
,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
3031
3036
.10.1109/IROS.2010.5653181
20.
Pan
,
M.
, and
Plummer
,
A.
,
2018
, “
Digital Switched Hydraulics
,”
Front. Mech. Eng.
, pp.
1
7
.10.1007/s11465-018-0509-7
21.
Johnston
,
D. N.
, and
Drew
,
J.
,
1996
, “
Measurement of Positive Displacement Pump Flow Ripple and Impedance
,”
Proc. Inst. Mech. Eng., Part I
,
210
(
1
), pp.
65
74
.10.1243/PIME_PROC_1996_210_437_02
22.
Wang
,
P.
,
Kudzma
,
S.
,
Johnston
,
N.
,
Plummer
,
A.
, and
Hillis
,
A.
,
2011
, “
The Influence of Wave Effects on Digital Switching Valve Performance
,”
The Fourth Workshop on Digital Fluid Power, Austrian Center of Competence in Mechatronics
, Linz, Austria, Sept. 21–22, pp.
10
25
.
23.
Pan
,
M.
,
Johnston
,
N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
1
), pp.
12
25
.10.1177/0959651813500952
24.
Pan
,
M.
,
Johnston
,
N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
10
), pp.
802
815
.10.1177/0959651814548299
25.
Pan
,
M.
,
Johnston
,
N.
,
Robertson
,
J.
,
Plummer
,
A.
,
Hillis
,
A.
, and
Yang
,
H. Y.
,
2015
, “
Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
12
), p.
121003
.10.1115/1.4031325
26.
Johnston
,
N.
,
Kudzma
,
S.
,
Plummer
,
A.
,
Sell
,
N.
,
Hillis
,
A.
, and
Pan
,
M.
,
2012
, “
A High Flow Fast Switching Valve for Digital Hydraulic Systems
,” Fifth Workshop on Digital Fluid Power, Tampere, Finland, Oct. 24–25, pp.
175
187
.
27.
Johnston
,
N.
,
Pan
,
M.
,
Plummer
,
A.
,
Hillis
,
A.
, and
Yang
,
H.
,
2015
, “
Theoretical Studies of a Switched Inertance Hydraulic System in a Four-Port Valve Configuration
,” Seventh Workshop on Digital Fluid Power, Linz, Austria, Feb. 26–27, pp.
72
86
.
28.
Cao
,
J.
,
Gu
,
L.
,
Wang
,
F.
, and
Qiu
,
M.
,
2005
, “
Switchmode Hydraulic Power Supply Theory
,”
ASME
Paper No. IMECE2005-79019.10.1115/IMECE2005-79019
29.
Wang
,
F.
, and
Gu
,
L.
,
2010
, “
Improving Characteristic of Switching Hydraulic System Based on High-Speed On/Off Valves
,”
Proceedings of Bath/ASME Symposium on Fluid Power and Motion Control, Bath, UK, Sept. 15–17, pp. 99–111.
30.
Guglielmino
,
E.
,
Semini
,
C.
,
Yang
,
Y. S.
,
Caldwell
,
D.
,
Kogler
,
H.
, and
Scheidl
,
R.
,
2009
, “
Energy Efficient Fluid Power in Autonomous Legged Robotics
,”
ASME
Paper No. DSCC2009-2522.10.1115/DSCC2009-2522
31.
Peng
,
S.
,
Kogler
,
H.
,
Guglielmino
,
E.
,
Scheidl
,
R.
,
Branson
,
D. T.
, and
Caldwell
,
D. G.
,
2013
, “
The Use of a Hydraulic DC-DC Converter in the Actuation of a Robotic Leg
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
5859
5864
.
32.
Kogler
,
H.
, and
Scheidl
,
R.
,
2010
, “
Hydraulic Switching Control of Resonant Drives
,”
Proceedings of the 12th Mechatronics Forum Biennial International Conferenc
e
, Zurich, Switzerland, June 28–30, pp.
28
30
. https://www.researchgate.net/publication/278476672_Hydraulic_Switching_Control_of_Resonant_Drives
33.
Kogler
,
H.
, and
Scheidl
,
R.
,
2015
, “
Linear Motion Control With a Low-Power Hydraulic Switching Converter—Part I: Concept, Test Rig, Simulations
,”
Proc. Inst. Mech. Eng., Part I
,
229
(
8
), pp.
677
684
.10.1177/0959651815583418
34.
Kogler
,
H.
, and
Scheidl
,
R.
,
2015
, “
Linear Motion Control With a Low-Power Hydraulic Switching Converter—Part II: Flatness-Based Control
,”
J. Syst. Control Eng., Part I
,
229
(
9
), pp.
818
828
.10.1177/0959651815589668
35.
Gradl
,
C.
,
Plockinger
,
A.
, and
Scheidl
,
R.
,
2016
, “
Sensorless Position Control With a Hydraulic Stepper Drive—Concept, Compression Modeling and Experimental Investigation
,”
Mechatronics
,
35
, pp.
91
101
.10.1016/j.mechatronics.2016.01.004
36.
Gradl
,
C.
, and
Scheidl
,
R.
,
2017
, “
Performance of an Energy Efficient Low Power Stepper Converter
,”
Energies
,
10
(
4
), p.
445
.10.3390/en10040445
37.
Holl
,
E.
,
Scheidl
,
R.
, and
Eshkabilov
,
S.
,
2017
, “
Simulation Study of a Digital Hydraulic Drive for a Knee Joint Exoskeleton
,”
ASME
Paper No. FPMC2017-4220.10.1115/FPMC2017-4220
38.
Kogler
,
H.
, and
Scheidl
,
R.
,
2012
, “
The Hydraulic Buck Converter Exploiting the Load Capacitance
,”
Proceedings of the Eighth International Fluid Power Conference
(
8IFK
), Dresden, Germany, Mar. 26–28, pp.
26
28
.https://www.researchgate.net/publication/278661324_The_hydraulic_buck_converter_exploiting_the_load_capacitance
39.
Kogler
,
H.
,
Scheidl
,
R.
, and
Schmidt
,
B. H.
,
2015
, “
Analysis of Wave Propagation Effects in Transmission Lines Due to Digital Valve Switching
,”
ASME
Paper No. FPMC2015-9607.10.1115/FPMC2015-9607
40.
Wiens
,
T. K.
,
2015
, “
Analysis and Mitigation of Valve Switching Losses in Switched Inertance Converters
,”
ASME
Paper No. FPMC2015-9600.10.1115/FPMC2015-9600
41.
Wiens
,
T.
,
2016
, “
Improving Performance of a Switched Inertance Buck Converter Via Positioning of Reservoir Flow Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
12
), p.
124502
.10.1115/1.4034045
42.
Van de Ven
,
J. D.
,
2013
, “
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part I: Modeling and Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021013
.10.1115/1.4023062
43.
Van de Ven
,
J. D.
,
2013
, “
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part II: Experimental Results
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021014
.10.1115/1.4023063
44.
Yudell
,
A. C.
, and
Van de Ven
,
J. D.
,
2017
, “
Experimental Validation of a Time Domain Cavitation Model for Switched Inertance Circuits
,”
ASME
Paper No. FPMC2017-4281.10.1115/FPMC2017-4281
45.
Pan
,
M.
,
2017
, “
A Global Optimisation of a Switched Inertance Hydraulic System Based on Genetic Algorithm
,”
Proceedings of 15th Scandinavian International Conference on Fluid Power
, Sweden, June 7–9, pp.
302
308
.
46.
Wiens
,
T.
, and
Das
,
D.
,
2017
, “
A Comparison of Hydraulic and Electrical Switch-Mode Converters
,”
ASME
Paper No. FPMC2017-4273.10.1115/FPMC2017-4273
47.
De Negri
,
V. J.
,
Wang
,
P.
,
Plummer
,
A.
, and
Johnston
,
D. N.
,
2014
, “
Behavioural Prediction of Hydraulic Step-Up Switching Converters
,”
Int. J. Fluid Power
,
15
(
1
), pp.
1
9
.10.1080/14399776.2014.882057
48.
Pan
,
M.
,
Plummer
,
A.
, and
El Agha
,
A.
,
2017
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration
,”
Energies
,
10
(
6
), p.
780
.
49.
Scheidl
,
R.
,
Manhartsgruber
,
B.
, and
Kogler
,
H.
,
2011
, “
Mixed Time–Frequency Domain Simulation of a Hydraulic Inductance Pipe With a Check Valve
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
10
), pp.
2413
2421
.10.1177/0954406211412459
50.
Kogler
,
H.
,
Scheidl
,
R.
, and
Ehrentraut
,
M.
,
2013
, “
A Simulation Model of a Hydraulic Buck Converter Based on a Mixed Time Frequency Domain Iteration
,”
ASME
Paper No. FPMC2013-4409.10.1115/FPMC2013-4409
51.
Scheidl
,
R.
,
Manhartsgruber
,
B.
,
Kogler
,
H.
,
Winkler
,
B.
, and
Mairhofer
,
M.
,
2008
, “
The Hydraulic Buck Converter-Concept and Experimental Results
,”
Proceedings of the Sixth International Conference on Fluid Power
, Dresden, Germany, Mar. 31–Apr. 2, pp.
501
513
.https://www.researchgate.net/publication/278658262_The_Hydraulic_Buck_Converter_-_Concept_and_Experimental_Results
52.
Cui
,
P.
,
Burton
,
R. T.
, and
Ukrainetz
,
P.
,
1991
, “
Development of a High Speed on/Off Valve
,”
SAE Trans., pp. 312–316
.
53.
Tu
,
H. C.
,
Rannow
,
M. B.
,
Van de Ven
,
J. D.
,
Wang
,
M.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2007
, “
High Speed Rotary Pulse Width Modulated On/Off Valve
,”
ASME
Paper No. IMECE2007-42559.10.1115/IMECE2007-42559
54.
Tu
,
H. C.
,
Rannow
,
M. B.
,
Wang
,
M.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2009
, “
Modeling and Validation of a High Speed Rotary PWM On/Off Valve
,”
ASME
Paper No. DSCC2009-2763.10.1115/DSCC2009-2763
55.
Katz
,
A. A.
, and
Van de Ven
,
J. D.
,
2009
, “
Design of a High-Speed On-Off Valve
,”
ASME
Paper No. IMECE2009-11189.10.1115/IMECE2009-11189
56.
Van de Ven
,
J. D.
, and
Katz
,
A.
,
2011
, “
Phase-Shift High-Speed Valve for Switch-Mode Control
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
1
), p.
011003
.10.1115/1.4002706
57.
Yokota
,
S.
, and
Akutu
,
K.
,
1991
, “
A Fast-Acting Electro-Hydraulic Digital Transducer: A Poppet-Type On-Off Valve Using a Multilayered Piezoelectric Device
,”
JSME Int. J., Ser. 2
,
34
(
4
), pp.
489
495
.10.1299/jsmeb1988.34.4_489
58.
Manhartsgruber
,
B.
,
2006
, “
A Hydraulic Control Valve for PWM Actuation at 400 Hz
,”
Power Transmission and Motion Control
(
PTMC
), Bath, UK, Sept. 13–15, pp.
373
385
. https://www.researchgate.net/publication/313798758_A_hydraulic_control_valve_for_PWM_actuation_at_400_Hz
59.
Ouyang
,
X.
,
Yang
,
H.
,
Jiang
,
H.
, and
Johnston, D. N..
,
2008
, “
Simulation of Piezoelectric High-Speed Digital Valves
,”
Bath/ASME Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 10–12, pp.
183
195
.
60.
Winkler
,
B.
,
Ploeckinger
,
A.
, and
Scheidl
,
R.
,
2010
, “
A Novel Piloted Fast Switching Multi Poppet Valve
,”
Int. J. Fluid Power
,
11
(
3
), pp.
7
14
.10.1080/14399776.2010.10781010
61.
Sell
,
N.
,
Johnston
,
N.
,
Plummer
,
A.
, and
Kudzma
,
S.
,
2015
, “
Development of a Position Controlled Digital Hydraulic Valve
,”
ASME Paper No. FPMC2015-9514.
62.
Lantela
,
T.
,
Kajaste
,
J.
,
Kostamo
,
J.
, and
Pietola
,
M.
,
2014
, “
Pilot Operated Miniature Valve With Fast Response and High Flow Capacity
,”
Int. J. Fluid Power
,
15
(
1
), pp.
11
18
.10.1080/14399776.2014.893712
63.
Lantela
,
T.
, and
Pietola
,
M.
,
2017
, “
High-Flow Rate Miniature Digital Valve System
,”
Int. J. Fluid Power
,
18
(
3
), pp.
188
195
.10.1080/14399776.2017.1358025
64.
Koktavy
,
S. E.
,
Yudell
,
A. C.
, and
Van de Ven
,
J. D.
,
2017
, “
Design of a Crank-Slider Spool Valve for Switch-Mode Circuits With Experimental Validation
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
6
), p.
061008
.10.1115/1.4038537
65.
ven der Buhs, J.
,
2018
, “
Investigation and Optimization of Hydraulic Step-Down Switched Inertance Converters With Non-Uniform Inertance Tubes
,” M.A. thesis, University of Saskatchewan, Saskatoon, SK, Canada.
You do not currently have access to this content.