Abstract

The primary goal of this paper is to develop an analytical framework to systematically design dynamic output feedback controllers that exponentially stabilize multidomain periodic orbits for hybrid dynamical models of robotic locomotion. We present a class of parameterized dynamic output feedback controllers such that (1) a multidomain periodic orbit is induced for the closed-loop system and (2) the orbit is invariant under the change of the controller parameters. The properties of the Poincaré map are investigated to show that the Jacobian linearization of the Poincaré map around the fixed point takes a triangular form. This demonstrates the nonlinear separation principle for hybrid periodic orbits. We then employ an iterative algorithm based on a sequence of optimization problems involving bilinear matrix inequalities to tune the controller parameters. A set of sufficient conditions for the convergence of the algorithm to stabilizing parameters is presented. Full-state stability and stability modulo yaw under dynamic output feedback control are addressed. The power of the analytical approach is ultimately demonstrated through designing a nonlinear dynamic output feedback controller for walking of a three-dimensional (3D) humanoid robot with 18 state variables and 325 controller parameters.

References

1.
Diop
,
S.
,
Grizzle
,
J.
,
Moraal
,
P.
, and
Stefanopoulou
,
A.
,
1994
, “
Interpolation and Numerical Differentiation for Observer Design
,”
American Control Conference
, Baltimore, MD, June 29–July 1, pp.
1329
1333
.10.1109/ACC.1994.752275
2.
Bainov
,
D.
, and
Simeonov
,
P.
,
1989
,
Systems With Impulse Effect: Stability, Theory and Applications
,
Ellis Horwood
.
3.
Ye
,
H.
,
Michel
,
A.
, and
Hou
,
L.
,
1998
, “
Stability Theory for Hybrid Dynamical Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
461
474
.10.1109/9.664149
4.
Haddad
,
W.
,
Chellaboina
,
V.
, and
Nersesov
,
S.
,
2006
,
Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control
,
Princeton University Press
,
Princeton, NJ
.
5.
Goebel
,
R.
,
Sanfelice
,
R.
, and
Teel
,
A.
,
2012
,
Hybrid Dynamical Systems: Modeling, Stability, and Robustness
,
Princeton University Press
,
Princeton, NJ
.
6.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.10.1016/j.automatica.2014.04.021
7.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,” Int. J. Robotics Res., 13(1), pp.
82
92
.
8.
Goswami
,
A.
,
1999
, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
523
533
.10.1177/02783649922066376
9.
Vukobratović
,
M.
,
Borovac
,
B.
, and
Surla
,
D.
,
1990
,
Dynamics of Biped Locomotion
,
Springer
,
Berlin
.
10.
Spong
,
M.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.10.1109/TAC.2005.851449
11.
Ames
,
A.
, and
Sastry
,
S.
,
2006
, “
Hybrid Geometric Reduction of Hybrid Systems
,”
45th IEEE Conference on Decision and Control
,
San Diego, CA
,
Dec. 13–15
, pp.
923
929
.
12.
Ames
,
A.
,
Gregg
,
R.
, and
Spong
,
M.
,
2007
, “
A Geometric Approach to Three-Dimensional Hipped Bipedal Robotic Walking
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
5123
5130
.10.1109/CDC.2007.4434880
13.
Manchester
,
I.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.10.1177/0278364910395339
14.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
15.
Westervelt
,
E.
,
Grizzle
,
J.
,
Chevallereau
,
C.
,
Choi
,
J.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
Taylor & Francis/CRC
,
Boca Raton, FL
.
16.
Morris
,
B.
, and
Grizzle
,
J.
,
2009
, “
Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1751
1764
.10.1109/TAC.2009.2024563
17.
Chevallereau
,
C.
,
Abba
,
G.
,
Aoustin
,
Y.
,
Plestan
,
F.
,
Westervelt
,
E.
,
Canudas-de Wit
,
C.
, and
Grizzle
,
J.
,
2003
, “
RABBIT: A Testbed for Advanced Control Theory
,”
Control Syst. Mag., IEEE
,
23
(
5
), pp.
57
79
.10.1109/MCS.2003.1234651
18.
Saglam
,
C. O.
, and
Byl
,
K.
,
2015
, “
Meshing Hybrid Zero Dynamics for Rough Terrain Walking
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Seattle, WA
,
May 26–30
, pp.
5718
5725
.10.1109/ICRA.2015.7140000
19.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
Compliant Hybrid Zero Dynamics Controller for Achieving Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1170
1193
.10.1177/0278364910379882
20.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
324
345
.10.1177/0278364912473344
21.
Park
,
H.-W.
,
Ramezani
,
A.
, and
Grizzle
,
J.
,
2013
, “
A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
331
345
.10.1109/TRO.2012.2230992
22.
Martin
,
A. E.
,
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
The Effects of Foot Geometric Properties on the Gait of Planar Bipeds Walking Under HZD-Based Control
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1530
1543
.10.1177/0278364914532391
23.
Lack
,
J.
,
Powell
,
M.
, and
Ames
,
A.
,
2014
, “
Planar Multi-Contact Bipedal Walking Using Hybrid Zero Dynamics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Hong Kong, China
, pp.
2582
2588
.10.1109/ICRA.2014.6907229
24.
Ramezani
,
A.
,
Hurst
,
J.
,
Akbai Hamed
,
K.
, and
Grizzle
,
J.
,
2013
, “
Performance Analysis and Feedback Control of ATRIAS, a Three-Dimensional Bipedal Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021012
.10.1115/1.4025693
25.
Akbari Hamed
,
K.
,
Buss
,
B.
, and
Grizzle
,
J.
,
2016
, “
Exponentially Stabilizing Continuous-Time Controllers for Periodic Orbits of Hybrid Systems: Application to Bipedal Locomotion With Ground Height Variations
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
977
999
.10.1177/0278364915593400
26.
Akbari Hamed
,
K.
, and
Grizzle
,
J.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
365
381
.10.1109/TRO.2013.2287831
27.
Zhao
,
H.
,
Hereid
,
A.
,
Ma
,
W-L.
, and
Ames
,
A. D.
,
2015
, “
Multi-Contact Bipedal Robotic Locomotion
,”
Robotica
,
35
(
5
), pp.
1072
1106
.10.1017/S0263574715000995
28.
Hereid
,
A.
,
Cousineau
,
E. A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
3D Dynamic Walking With Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Stockholm, Sweden
,
May 16–21
, pp.
1447
1454
.10.1109/ICRA.2016.7487279
29.
Reher
,
J. P.
,
Hereid
,
A.
,
Kolathaya
,
S.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
Algorithmic Foundations of Realizing Multi-Contact Locomotion on the Humanoid Robot DURUS
,”
Twelfth International Workshop on Algorithmic Foundations on Robotics
,
San Francisco, CA
.
30.
Gregg
,
R.
,
Lenzi
,
T.
,
Hargrove
,
L.
, and
Sensinger
,
J.
,
2014
, “
Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1455
1471
.10.1109/TRO.2014.2361937
31.
Gregg
,
R.
, and
Sensinger
,
J.
,
2014
, “
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
246
254
.10.1109/TCST.2012.2236840
32.
Zhao
,
H.
,
Horn
,
J.
,
Reher
,
J.
,
Paredes
,
V.
, and
Ames
,
A.
,
2016
, “
Multicontact Locomotion on Transfemoral Prostheses Via Hybrid System Models and Optimization-Based Control
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
502
513
.10.1109/TASE.2016.2524528
33.
Akbari Hamed
,
K.
, and
Gregg
,
R. D.
,
2017
, “
Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1153
1167
.10.1109/TCST.2016.2597741
34.
Agrawal
,
A.
,
Harib
,
O.
,
Hereid
,
A.
,
Finet
,
S.
,
Masselin
,
M.
,
Praly
,
L.
,
Ames
,
A.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2017
, “
First Steps Towards Translating HZD Control of Bipedal Robots to Decentralized Control of Exoskeletons
,”
IEEE Access
,
5
, pp.
9919
9934
.10.1109/ACCESS.2017.2690407
35.
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
36.
Akbari Hamed
,
K.
,
Sadati
,
N.
,
Gruver
,
W.
, and
Dumont
,
G.
,
2011
, “
Exponential Stabilisation of Periodic Orbits for Running of a Three-Dimensional Monopedal Robot
,”
Control Theory Appl., IET
,
5
(
11
), pp.
1304
1320
.10.1049/iet-cta.2010.0292
37.
Cao
,
Q.
, and
Poulakakis
,
I.
,
2016
, “
Quadrupedal Running With a Flexible Torso: Control and Speed Transitions With Sums-of-Squares Verification
,”
Artif. Life Rob.
,
21
(
4
), pp.
384
392
.10.1007/s10015-016-0330-5
38.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
, 3rd ed.,
Springer
,
London
.
39.
Ciccarella
,
G.
,
Mora
,
M. D.
, and
Germani
,
A.
,
1993
, “
A Luenberger-Like Observer for Nonlinear Systems
,”
Int. J. Control
,
57
(
3
), pp.
537
556
.10.1080/00207179308934406
40.
Rajamani
,
R.
,
1998
, “
Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
43
(
3
), pp.
397
401
.10.1109/9.661604
41.
Arcak
,
M.
, and
Kokotovic
,
P.
,
2001
, “
Nonlinear Observers: A Circle Criterion Design and Robustness Analysis
,”
Automatica
,
37
(
12
), pp.
1923
1930
.10.1016/S0005-1098(01)00160-1
42.
Zemouche
,
A.
, and
Boutayeb
,
M.
,
2013
, “
On LMI Conditions to Design Observers for Lipschitz Nonlinear Systems
,”
Automatica
,
49
(
2
), pp.
585
591
.10.1016/j.automatica.2012.11.029
43.
Wang
,
Y.
, and
Rajamani
,
R.
,
2016
, “
Feasibility Analysis of the Bilinear Matrix Inequalities With an Application to Multi-Objective Nonlinear Observer Design
,”
IEEE 55th Conference on Decision and Control
(
CDC
),
Las Vegas, NV
,
Dec. 12–14
, pp.
3252
3257
. 10.1109/CDC.2016.7798758
44.
Goh
,
K.
,
Safonov
,
M.
, and
Ly
,
J.
,
1996
, “
Robust Synthesis Via Bilinear Matrix Inequalities
,”
Int. J. Robust Nonlinear Control
,
6
(
9–10
), pp.
1079
1095
.10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-#
45.
VanAntwerp
,
J.
, and
Braatz
,
R.
,
2000
, “
A Tutorial on Linear and Bilinear Matrix Inequalities
,”
J. Process Control
,
10
(
4
), pp.
363
385
.10.1016/S0959-1524(99)00056-6
46.
Atassi
,
A.
, and
Khalil
,
H.
,
1999
, “
A Separation Principle for the Stabilization of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1672
1687
.10.1109/9.788534
47.
Ahrens
,
J.
, and
Khalil
,
H.
,
2009
, “
High-Gain Observers in the Presence of Measurement Noise: A Switched-Gain Approach
,”
Automatica
,
45
(
4
), pp.
936
943
.10.1016/j.automatica.2008.11.012
48.
Prasov
,
A. A.
, and
Khalil
,
H. K.
,
2013
, “
A Nonlinear High-Gain Observer for Systems With Measurement Noise in a Feedback Control Framework
,”
IEEE Trans. Autom. Control
,
58
(
3
), pp.
569
580
.10.1109/TAC.2012.2218063
49.
Sanfelice
,
R. G.
, and
Praly
,
L.
,
2011
, “
On the Performance of High-Gain Observers With Gain Adaptation Under Measurement Noise
,”
Automatica
,
47
(
10
), pp.
2165
2176
.10.1016/j.automatica.2011.08.002
50.
Krener
,
A.
, and
Isidori
,
A.
,
1983
, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
,
3
(
1
), pp.
47
52
.10.1016/0167-6911(83)90037-3
51.
Raghavan
,
S.
, and
Hedrick
,
J.
,
1994
, “
Observer Design for a Class of Nonlinear Systems
,”
Int. J. Control
,
59
(
2
), pp.
515
528
.10.1080/00207179408923090
52.
Gauthier
,
J. P.
,
Hammouri
,
H.
, and
Othman
,
S.
,
1992
, “
A Simple Observer for Nonlinear Systems Applications to Bioreactors
,”
IEEE Trans. Autom. Control
,
37
(
6
), pp.
875
880
.10.1109/9.256352
53.
Teel
,
A.
, and
Praly
,
L.
,
1994
, “
Global Stabilizability and Observability Imply Semi-Global Stabilizability by Output Feedback
,”
Syst. Control Lett.
,
22
(
5
), pp.
313
325
.10.1016/0167-6911(94)90029-9
54.
Maggiore
,
M.
, and
Passino
,
K. M.
,
2003
, “
A Separation Principle for a Class of Non-Uco Systems
,”
IEEE Trans. Autom. Control
,
48
(
7
), pp.
1122
1133
.10.1109/TAC.2003.814110
55.
Arcak
,
M.
,
2005
, “
Certainty-Equivalence Output-Feedback Design With Circle-Criterion Observers
,”
IEEE Trans. Autom. Control
,
50
(
6
), pp.
905
909
.10.1109/TAC.2005.849257
56.
Aç ikmeşe
,
B.
, and
Corless
,
M.
,
2011
, “
Observers for Systems With Nonlinearities Satisfying Incremental Quadratic Constraints
,”
Automatica
,
47
(
7
), pp.
1339
1348
.10.1016/j.automatica.2011.02.017
57.
Lebastard
,
V.
,
Aoustin
,
Y.
,
Plestan
,
F.
, and
Fridman
,
L.
,
2006
, “
Absolute Orientation Estimation Based on High Order Sliding Mode Observer for a Five Link Walking Biped Robot
,”
International Workshop on Variable Structure Systems
(
VSS' 06
),
Alghero, Sardinia, Italy
,
June 5–7
, pp.
373
378
.10.1109/VSS.2006.1644546
58.
Lebastard
,
V.
,
Aoustin
,
Y.
, and
Plestan
,
F.
,
2006
, “
Observer-Based Control of a Walking Biped Robot Without Orientation Measurement
,”
Robotica
,
24
(
3
), pp.
385
400
.10.1017/S0263574705002390
59.
Lebastard
,
V.
,
Aoustin
,
Y.
, and
Plestan
,
F.
,
2005
, “
Step-by-Step Sliding Mode Observer for Control of a Walking Biped Robot by Using Only Actuated Variables Measurement
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
559
564
.10.1109/IROS.2005.1545448
60.
Grizzle
,
J. W.
,
Choi
,
J. H.
,
Hammouri
,
H.
, and
Morris
,
B.
,
2007
, “
On Observer-Based Feedback Stabilization of Periodic Orbits in Bipedal Locomotion
,”
Methods and Models in Automation and Robotics
, pp.
27
30
.
61.
Grizzle
,
J.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
51
64
.10.1109/9.898695
62.
Parker
,
T.
, and
Chua
,
L.
,
1989
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer
,
New York
.
63.
Akbari Hamed
,
K.
, and
Grizzle
,
J. W.
,
2017
, “
Reduced-Order Framework for Exponential Stabilization of Periodic Orbits on Parameterized Hybrid Zero Dynamics Manifolds: Application to Bipedal Locomotion
,”
Nonlinear Anal.: Hybrid Syst.
,
25
, pp.
227
245
.10.1016/j.nahs.2016.08.006
64.
Buss
,
B.
,
Akbari Hamed
,
K.
,
Griffin
,
B. A.
, and
Grizzle
,
J. W.
,
2016
, “
Experimental Results for 3D Bipedal Robot Walking Based on Systematic Optimization of Virtual Constraints
,”
American Control Conference
(
ACC
),
Boston, MA
,
July 6–8
, pp.
4785
4792
.10.1109/ACC.2016.7526111
65.
Hamed
,
K. A.
,
Ames
,
A. D.
, and
Gregg
,
R. D.
,
2018
, “
Observer-Based Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Underactuated Bipedal Walking
,”
Annual American Control Conference
(
ACC
),
Milwaukee, WI
,
June 27–29
, pp.
1438
1445
.10.23919/ACC.2018.8431607
66.
Henrion
,
D.
,
Lofberg
,
J.
,
Kocvara
,
M.
, and
Stingl
,
M.
,
2005
, “
Solving Polynomial Static Output Feedback Problems With PENBMI
,”
44th IEEE Conference on Decision and Control, and European Control Conference
,
Seville, Spain
,
Dec. 15
, pp.
7581
7586
.
67.
de Oliveira
,
M.
,
Bernussou
,
J.
, and
Geromel
,
J.
,
1999
, “
A New Discrete-Time Robust Stability Condition
,”
Syst. Control Lett.
,
37
(
4
), pp.
261
265
.10.1016/S0167-6911(99)00035-3
68.
Toker
,
O.
, and
Ozbay
,
H.
,
1995
, “
On the NP-Hardness of Solving Bilinear Matrix Inequalities and Simultaneous Stabilization With Static Output Feedback
,”
American Control Conference
,
Seattle, WA
,
June 21–23
, pp.
2525
2526
.10.1109/ACC.1995.532300
69.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
123
1230
.10.1016/0021-9290(95)00178-6
70.
Maggiore
,
M.
, and
Consolini
,
L.
,
2013
, “
Virtual Holonomic Constraints for Euler Lagrange Systems
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
1001
1008
.10.1109/TAC.2012.2215538
71.
Mohammadi
,
A.
,
Maggiore
,
M.
, and
Consolini
,
L.
,
2018
, “
Dynamic Virtual Holonomic Constraints for Stabilization of Closed Orbits in Underactuated Mechanical Systems
,”
Automatica
,
94
, pp.
112
124
.10.1016/j.automatica.2018.04.023
72.
Hereid
,
A.
,
Hubicki
,
C. M.
,
Cousineau
,
E. A.
, and
Ames
,
A. D.
,
2018
, “
Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
370
387
.10.1109/TRO.2017.2783371
73.
Chevallereau
,
C.
,
Grizzle
,
J.
, and
Shih
,
C.-L.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
74.
TOMLAB,
2018
, “
TOMLAB Optimization
,” accessed Aug. 28, 2019, http://tomopt.com/tomlab/
75.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE
International Symposium on Computer Aided Control Systems Design
,
New Orleans, LA
,
Sept. 2–4
, pp.
284
289
.10.1109/CACSD.2004.1393890
76.
Shih
,
C.-L.
,
Grizzle
,
J. W.
, and
Chevallereau
,
C.
,
2012
, “
From Stable Walking to steering of a 3D Bipedal Robot With Passive Point Feet
,”
Robotica
,
30
(
7
), pp.
1119
1130
.10.1017/S026357471100138X
77.
Gregg
,
R.
,
Tilton
,
A.
,
Candido
,
S.
,
Bretl
,
T.
, and
Spong
,
M.
,
2012
, “
Control and Planning of 3-D Dynamic Walking With Asymptotically Stable Gait Primitives
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1415
1423
.10.1109/TRO.2012.2210484
78.
Gregg
,
R.
, and
Righetti
,
L.
,
2013
, “
Controlled Reduction With Unactuated Cyclic Variables: Application to 3D Bipedal Walking With Passive Yaw Rotation
,”
IEEE Trans. Autom. Control
,
58
(
10
), pp.
2679
2685
.10.1109/TAC.2013.2256011
79.
Dai
,
H.
, and
Tedrake
,
R.
,
2013
, “
2-Gain Optimization for Robust Bipedal Walking on Unknown Terrain
,”
IEEE
International Conference on Robotics and Automation,
Karlsruhe, Germany
,
May 6–10
, pp.
3116
3123
.10.1109/ICRA.2013.6631010
80.
Dai
,
H.
, and
Tedrake
,
R.
,
2016
, “
Planning Robust Walking Motion on Uneven Terrain Via Convex Optimization
,”
IEEE-RAS 16th International Conference on Humanoid Robots
(
Humanoids
),
Cancun, Mexico
,
Nov. 15–17
, pp.
579
586
.10.1109/HUMANOIDS.2016.7803333
You do not currently have access to this content.