This paper investigates the global regulation problem for a class of nonlinear systems with integral input-to-state stable (iISS) dynamic uncertainty. By designing a reduced-order observer, a systematic output feedback control strategy is proposed. The designed dynamic controller can achieve the global set-point regulation control and guarantee all signals of the closed-loop systems bounded. The developed control schemes find its application in the pendulum control system. Simulation results verify its effectiveness.

References

1.
Sontag
,
E. D.
,
1989
, “
Smooth Stabilization Implies Comprime Factorization
,”
IEEE Trans. Autom. Control
,
34
(
4
), pp.
435
443
.10.1109/9.28018
2.
Kokotović
,
P. V.
, and
Arcak
,
M.
,
2001
, “
Constructive Nonlinear Control: A Historical Perspective
,”
Automatica
,
37
(
5
), pp.
637
662
.10.1016/S0005-1098(01)00002-4
3.
Angeli
,
D.
,
Sontag
,
E. D.
, and
Wang
,
Y.
,
2000
, “
A Characterization of Integral Input to State Stability
,”
IEEE Trans. Autom. Control
,
45
(
6
), pp.
1082
1087
.10.1109/9.863594
4.
Jiang
,
Z. P.
,
Mareels
,
I.
,
Hill
,
D. J.
, and
Huang
,
J.
,
2004
, “
A Unifying Framework for Global Regulation Via Nonlinear Output Feedback: From ISS to iISS
,”
IEEE Trans. Autom. Control
,
49
(
4
), pp.
549
562
.10.1109/TAC.2004.825663
5.
Xu
,
D. B.
,
Huang
,
J.
, and
Jiang
,
Z. P.
,
2013
, “
Global Adaptive Output Regulation for a Class of Nonlinear Systems With iISS Inverse Dynamics Using Output Feedback
,”
Automatica
,
49
(
7
), pp.
2184
2191
.10.1016/j.automatica.2013.03.024
6.
Arcak
,
M.
,
Angeli
,
D.
, and
Sontag
,
E. D.
,
2002
, “
A Unifying Integral ISS Framework for Stability of Nonlinear Cascades
,”
SIAM J. Control Optim.
,
40
(
6
), pp.
1888
1904
.10.1137/S0363012901387987
7.
Ito
,
H.
,
2010
, “
A Lyapunov Approach to Cascade Interconnection of Integral Input-to-State Stable Systems
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
702
707
.10.1109/TAC.2009.2037457
8.
Wu
,
Y. Q.
,
Yu
,
J. B.
, and
Zhao
,
Y.
,
2011
, “
Further Results on Global Asymptotic Regulation Control for a Class of Nonlinear Systems With iISS Inverse Dynamics
,”
IEEE Trans. Autom. Control
,
56
(
4
), pp.
941
946
.10.1109/TAC.2011.2114431
9.
Xu
,
D. B.
, and
Huang
,
J.
,
2011
, “
Output Regulation for Output Feedback Systems With iISS Inverse Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
7
), p.
044503
.10.1115/1.4003382
10.
Yu
,
X.
,
Wu
,
Y. Q.
, and
Xie
,
X. J.
,
2012
, “
Reduced-Order Observer-Based Output Feedback Regulation for a Class of Nonlinear Systems With iISS Inverse Dynamics
,”
Int. J. Control
,
85
(
12
), pp.
1942
1951
.10.1080/00207179.2012.713517
11.
Jiang
,
Z. P.
, and
Mareels
,
I.
,
2001
, “
Robust Nonlinear Integral Control
,”
IEEE Trans. Autom. Control
,
46
(
8
), pp.
1336
1342
.10.1109/9.940947
12.
Yu
,
J. B.
, and
Wu
,
Y. Q.
,
2011
, “
Global Set-Point Tracking Control for a Class of Nonlinear Systems With iISS Inverse Dynamics
,”
Asian J. Control
,
13
(
6
), pp.
966
976
.10.1002/asjc.269
13.
Jiang
,
Z. P.
, and
Hill
,
D. J.
,
1999
, “
A Robust Adaptive Backstepping Scheme for Nonlinear Systems With Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1705
1710
.10.1109/9.788536
14.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice-Hall
, Upper Saddle River,
NJ
.
15.
Ouyang
,
H.
,
Petersen
,
I. R.
, and
Ugrinovskii
,
V.
,
2012
, “
Stability Analysis and State Feedback Stabilization of Pendulum-Like Systems With Multiple Nonlinearities
,”
Automatica
,
48
(
9
), pp.
2235
2243
.10.1016/j.automatica.2012.06.022
You do not currently have access to this content.