This paper investigates the global regulation problem for a class of nonlinear systems with integral input-to-state stable (iISS) dynamic uncertainty. By designing a reduced-order observer, a systematic output feedback control strategy is proposed. The designed dynamic controller can achieve the global set-point regulation control and guarantee all signals of the closed-loop systems bounded. The developed control schemes find its application in the pendulum control system. Simulation results verify its effectiveness.
Issue Section:
Research Papers
References
1.
Sontag
, E. D.
, 1989
, “Smooth Stabilization Implies Comprime Factorization
,” IEEE Trans. Autom. Control
, 34
(4
), pp. 435
–443
.10.1109/9.280182.
Kokotović
, P. V.
, and Arcak
, M.
, 2001
, “Constructive Nonlinear Control: A Historical Perspective
,” Automatica
, 37
(5
), pp. 637
–662
.10.1016/S0005-1098(01)00002-43.
Angeli
, D.
, Sontag
, E. D.
, and Wang
, Y.
, 2000
, “A Characterization of Integral Input to State Stability
,” IEEE Trans. Autom. Control
, 45
(6
), pp. 1082
–1087
.10.1109/9.8635944.
Jiang
, Z. P.
, Mareels
, I.
, Hill
, D. J.
, and Huang
, J.
, 2004
, “A Unifying Framework for Global Regulation Via Nonlinear Output Feedback: From ISS to iISS
,” IEEE Trans. Autom. Control
, 49
(4
), pp. 549
–562
.10.1109/TAC.2004.8256635.
Xu
, D. B.
, Huang
, J.
, and Jiang
, Z. P.
, 2013
, “Global Adaptive Output Regulation for a Class of Nonlinear Systems With iISS Inverse Dynamics Using Output Feedback
,” Automatica
, 49
(7
), pp. 2184
–2191
.10.1016/j.automatica.2013.03.0246.
Arcak
, M.
, Angeli
, D.
, and Sontag
, E. D.
, 2002
, “A Unifying Integral ISS Framework for Stability of Nonlinear Cascades
,” SIAM J. Control Optim.
, 40
(6
), pp. 1888
–1904
.10.1137/S03630129013879877.
Ito
, H.
, 2010
, “A Lyapunov Approach to Cascade Interconnection of Integral Input-to-State Stable Systems
,” IEEE Trans. Autom. Control
, 55
(3
), pp. 702
–707
.10.1109/TAC.2009.20374578.
Wu
, Y. Q.
, Yu
, J. B.
, and Zhao
, Y.
, 2011
, “Further Results on Global Asymptotic Regulation Control for a Class of Nonlinear Systems With iISS Inverse Dynamics
,” IEEE Trans. Autom. Control
, 56
(4
), pp. 941
–946
.10.1109/TAC.2011.21144319.
Xu
, D. B.
, and Huang
, J.
, 2011
, “Output Regulation for Output Feedback Systems With iISS Inverse Dynamics
,” ASME J. Dyn. Syst., Meas., Control
, 133
(7
), p. 044503
.10.1115/1.400338210.
Yu
, X.
, Wu
, Y. Q.
, and Xie
, X. J.
, 2012
, “Reduced-Order Observer-Based Output Feedback Regulation for a Class of Nonlinear Systems With iISS Inverse Dynamics
,” Int. J. Control
, 85
(12
), pp. 1942
–1951
.10.1080/00207179.2012.71351711.
Jiang
, Z. P.
, and Mareels
, I.
, 2001
, “Robust Nonlinear Integral Control
,” IEEE Trans. Autom. Control
, 46
(8
), pp. 1336
–1342
.10.1109/9.94094712.
Yu
, J. B.
, and Wu
, Y. Q.
, 2011
, “Global Set-Point Tracking Control for a Class of Nonlinear Systems With iISS Inverse Dynamics
,” Asian J. Control
, 13
(6
), pp. 966
–976
.10.1002/asjc.26913.
Jiang
, Z. P.
, and Hill
, D. J.
, 1999
, “A Robust Adaptive Backstepping Scheme for Nonlinear Systems With Unmodeled Dynamics
,” IEEE Trans. Autom. Control
, 44
(9
), pp. 1705
–1710
.10.1109/9.78853614.
Khalil
, H. K.
, 2002
, Nonlinear Systems
, 3rd ed., Prentice-Hall
, Upper Saddle River, NJ
.15.
Ouyang
, H.
, Petersen
, I. R.
, and Ugrinovskii
, V.
, 2012
, “Stability Analysis and State Feedback Stabilization of Pendulum-Like Systems With Multiple Nonlinearities
,” Automatica
, 48
(9
), pp. 2235
–2243
.10.1016/j.automatica.2012.06.022Copyright © 2015 by ASME
You do not currently have access to this content.