One of the main challenges of cosimulating hardware-in-the-loop (HIL) systems in real-time over the Internet is the fidelity of the simulation. The dynamics of the Internet may significantly distort the dynamics of the network-integrated system. This paper presents the development and experimental validation of an iterative learning control (ILC) based approach to improve fidelity of such networked system integration. Toward this end, a new metric for characterizing coupling fidelity is proposed, which, unlike some existing metrics, enables the formulation of the problem of improving system fidelity without requiring any knowledge about the reference dynamics (i.e., dynamics that would be observed, if the system was physically connected). Next, using this metric, the problem of improving fidelity is formulated as an ILC problem. The proposed approach is illustrated on an experimental setup simulating a hybrid electric powertrain distributed across three different sites with a real engine and battery in the loop. The conclusion is that the proposed approach holds significant potential for achieving high fidelity in Internet-distributed HIL (ID-HIL) simulation setups.

References

1.
Fathy
,
H. K.
,
Filipi
,
Z. S.
,
Hagena
,
J.
, and
Stein
,
J. L.
,
2006
, “
Review of Hardware-in-the-Loop Simulation and Its Prospects in the Automotive Area
,”
SPIE—Modeling and Simulation for Military Applications
, Kissimmee, FL
,
Apr. 18–21
, Vol.
6228
, pp.
1
20
.
2.
Kimura
,
A.
, and
Maeda
,
I.
,
1996
, “
Development of Engine Control System Using Real Time Simulator
,”
IEEE International Symposium on Computer-Aided Control System Design
, Dearborn, MI,
Sep. 15–18
, pp.
157
163
.
3.
Verma
,
R.
,
Del Vecchio
,
D.
, and
Fathy
,
H. K.
,
2008
, “
Development of a Scaled Vehicle With Longitudinal Dynamics of an HMMWV for an ITS Testbed
,”
IEEE/ASME Trans. Mechatron.
,
13
(
1
), pp.
46
57
.10.1109/TMECH.2008.915820
4.
Leitner
,
J.
,
2001
, “
A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications
,”
IEEE Aerospace Conference
, Big Sky, MT,
Mar. 10–17
, Vol.
2
, pp.
615
620
.
5.
Yue
,
X.
,
Vilathgamuwa
,
D. M.
, and
Tseng
,
K.-J.
,
2005
, “
Robust Adaptive Control of a Three-Axis Motion Simulator With State Observers
,”
IEEE/ASME Trans. Mechatron.
,
10
(
4
), pp.
437
448
.10.1109/TMECH.2005.852499
6.
Ganguli
,
A.
,
Deraemaeker
,
A.
,
Horodinca
,
M.
, and
Preumont
,
A.
,
2005
, “
Active Damping of Chatter in Machine Tools—Demonstration With a ‘Hardware-in-the-Loop’ Simulator
,”
J. Syst. Control Eng.
,
219
(
5
), pp.
359
369
.10.1243/095965105X33455
7.
Aghili
,
F.
, and
Piedboeuf
,
J.-C.
,
2002
, “
Contact Dynamics Emulation for Hardware-in-Loop Simulation of Robots Interacting With Environment
,”
IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, Vol.
1
, pp.
523
529
.
8.
White
,
G. D.
,
Bhatt
,
R. M.
,
Tang
,
C. P.
, and
Krovi
,
V. N.
,
2009
, “
Experimental Evaluation of Dynamic Redundancy Resolution in a Nonholonomic Wheeled Mobile Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
14
(
3
), pp.
349
357
.10.1109/TMECH.2008.2008802
9.
Buford
,
J. A.
, Jr.
,
Jolly
,
A. C.
,
Mobley
,
S. B.
, and
Sholes
,
W. J.
,
2000
, “
Advancements in Hardware-in-the-Loop Simulations at the U.S. Army Aviation and Missile Command
,”
SPIE—Technologies for Synthetic Environments: Hardware-in-the-Loop Testing
V, R. L. Murrer, ed.,
Orlando, FL, Apr. 24–26
, Vol.
4027
, pp.
2
10
.
10.
Huber
,
E. G.
, Jr.
, and
Courtney
,
R. A.
,
1997
, “
Hardware-in-the-Loop Simulation at Wright Laboratory's Dynamic Infrared Missile Evaluator (Dime) Facility
,”
Technologies for Synthetic Environments: Hardware-in-the-Loop Testing II
, Orlando, FL,
Apr. 21–23
, Vol.
3084
, pp.
2
8
.
11.
Mahin
,
S.
,
Nigbor
,
R.
,
Pancake
,
C.
,
Reitherman
,
R.
, and
Wood
,
S.
,
2003
, “
The Establishment of the NEES Consortium
,”
ASCE/SEI Structures Congress and Exposition: Engineering Smarter
,
Seattle, WA, May 29–31
, pp.
181
182
.
12.
Spencer
,
B. F.
,
Elnashai
,
A.
,
Nakata
,
N.
,
Saliem
,
H.
,
Yang
,
G.
,
Futrelle
,
J.
,
Glick
,
W.
,
Marcusiu
,
D.
,
Ricker
,
K.
,
Finholt
,
T.
,
Horn
,
D.
,
Hubbard
,
P.
,
Keahey
,
K.
,
Liming
,
L.
,
Zaluzec
,
N.
,
Pearlman
,
L.
, and
Stauffer
,
E.
,
2004
, “
The Most Experiment: Earthquake Engineering on the Grid
,” Technical Report NEESgrid-2004-41, NEESgrid.
13.
Pan
,
P.
,
Tada
,
M.
, and
Nakashima
,
M.
,
2005
, “
Online Hybrid Test by Internet Linkage of Distributed Test-Analysis Domains
,”
Earthquake Eng. Struct. Dyn.
,
34
(
11
), pp.
1407
1425
.10.1002/eqe.494
14.
Stojadinovic
,
B.
,
Mosqueda
,
G.
, and
Mahin
,
S. A.
,
2006
, “
Event-Driven Control System for Geographically Distributed Hybrid Simulation
,”
J. Struct. Eng.
,
132
(
1
), pp.
68
77
.10.1061/(ASCE)0733-9445(2006)132:1(68)
15.
Takahashi
,
Y.
, and
Fenves
,
G. L.
,
2006
, “
Software Framework for Distributed Experimental-Computational Simulation of Structural Systems
,”
Earthquake Eng. Struct. Dyn.
,
35
(
3
), pp.
267
291
.10.1002/eqe.518
16.
Mosqueda
,
G.
,
Stojadinovic
,
B.
,
Hanley
,
J.
,
Sivaselvan
,
M.
, and
Reinhorn
,
A. M.
,
2008
, “
Hybrid Seismic Response Simulation on a Geographically Distributed Bridge Model
,”
J. Struct. Eng.
,
134
(
4
), pp.
535
543
.10.1061/(ASCE)0733-9445(2008)134:4(535)
17.
Compere
,
M.
,
Goodell
,
J.
,
Simon
,
M.
,
Smith
,
W.
, and
Brudnak
,
M.
,
2006
, “
Robust Control Techniques Enabling Duty Cycle Experiments Utilizing a 6-DOF Crewstation Motion Base, a Full Scale Combat Hybrid Electric Power System, and Long Distance Internet Communications
,”
SAE
Technical Paper No. 2006-01-3077.10.4271/2006-01-3077
18.
Goodell
,
J.
,
Compere
,
M.
,
Simon
,
M.
,
Smith
,
W.
,
Wright
,
R.
, and
Brudnak
,
M.
,
2006
, “
Robust Control Techniques for State Tracking in the Presence of Variable Time Delays
,”
SAE
Technical Paper No. 2006-01-1163.10.4271/2006-01-1163
19.
Brudnak
,
M.
,
Pozolo
,
M.
,
Paul
,
V.
,
Mohammad
,
S.
,
Smith
,
W.
,
Compere
,
M.
,
Goodell
,
J.
,
Holtz
,
D.
,
Mortsfield
,
T.
, and
Shvartsman
,
A.
,
2007
, “
Soldier/Harware-in-the-Loop Simulation-Based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 2
,”
Simulation Interoperability Workshop
,
Norfolk, VA
, Mar. 25–30, SIW-07S-016.
20.
Ersal
,
T.
,
Brudnak
,
M.
,
Salvi
,
A.
,
Stein
,
J. L.
,
Filipi
,
Z.
, and
Fathy
,
H. K.
,
2011
, “
Development and Model-Based Transparency Analysis of an Internet-Distributed Hardware-in-the-Loop Simulation Platform
,”
Mechatronics
,
21
(
1
), pp.
22
29
.10.1016/j.mechatronics.2010.08.002
21.
Ersal
,
T.
,
Brudnak
,
M.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2012
, “
Statistical Transparency Analysis in Internet-Distributed Hardware-in-the-Loop Simulation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
2
), pp.
228
238
.10.1109/TMECH.2010.2095024
22.
Ersal
,
T.
,
Gillespie
,
R. B.
,
Brudnak
,
M.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2013
, “
Effect of Coupling Point Selection on Distortion in Internet-Distributed Hardware-in-the-Loop Simulation
,”
Int. J. Veh. Des.
,
61
(
1–4
), pp.
67
85
.10.1504/IJVD.2013.050840
23.
Tandon
,
A.
,
Brudnak
,
M. J.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2013
, “
An Observer Based Framework to Improve Fidelity in Internet-Distributed Hardware-in-the-Loop Simulations
,”
ASME
Paper No. DSCC2013-3878.10.1115/DSCC2013-3878
24.
Kim
,
Y.
,
Salvi
,
A.
,
Stefanopoulou
,
A.
, and
Ersal
,
T.
, “
Reducing Soot Emissions in a Diesel Series Hybrid Electric Vehicle Using a Power Rate Constraint Map
,”
IEEE Trans. Veh. Tech.
(in press)10.1109/TVT.2014.2321346
25.
Kress
,
R. L.
,
Hamel
,
W. R.
,
Murray
,
P.
, and
Bills
,
K.
,
2001
, “
Control Strategies for Teleoperated Internet Assembly
,”
IEEE/ASME Trans. Mechatron.
,
6
(
4
), pp.
410
416
.10.1109/3516.974854
26.
Elhajj
,
I.
,
Tan
,
J.
,
Xi
,
N.
,
Fung
,
W. K.
,
Liu
,
Y. H.
,
Kaga
,
T.
,
Hasegawa
,
Y.
, and
Fukuda
,
T.
,
2002
, “
Multi-Site Internet-Based Tele-Cooperation
,”
Integr. Comput.-Aided Eng.
,
9
(
2
), pp.
117
127
.
27.
Munir
,
S.
, and
Book
,
W. J.
,
2002
, “
Internet-Based Teleoperation Using Wave Variables With Prediction
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
124
133
.10.1109/TMECH.2002.1011249
28.
Niemeyer
,
G.
, and
Slotine
,
J.-J. E.
,
2002
, “
Toward Bilateral Internet Teleoperation
,”
Beyond Webcams: An Introduction to Online Robots
,
MIT Press
, Cambridge, MA, pp.
193
213
.
29.
Sun
,
L.-N.
,
Xie
,
X.-H.
,
Fu
,
L.-X.
, and
Du
,
Z.-J.
,
2003
, “
Internet-Based Telerobotic Surgery: Problems and Approaches
,”
Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol.
,
35
(
2
), pp.
129
133
.
30.
Shi
,
Y.-H.
, and
Wang
,
Y.-C.
,
2004
, “
Study on Internet-Based Force Feedback Technology
,”
Robot
,
26
(
4
), pp.
330
335
.
31.
Slawinski
,
E.
,
Postigo
,
J. F.
, and
Mut
,
V.
,
2007
, “
Bilateral Teleoperation Through the Internet
,”
Rob. Auton. Syst.
,
55
(
3
), pp.
205
215
.10.1016/j.robot.2006.09.002
32.
Chopra
,
N.
,
Berestesky
,
P.
, and
Spong
,
M. W.
,
2008
, “
Bilateral Teleoperation Over Unreliable Communication Networks
,”
IEEE Trans. Control Syst. Technol.
,
16
(
2
), pp.
304
313
.10.1109/TCST.2007.903397
33.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.10.1109/70.258054
34.
Hashtrudi-Zaad
,
K.
, and
Salcudean
,
S. E.
,
2002
, “
Transparency in Time-Delayed Systems and the Effect of Local Force Feedback for Transparent Teleoperation
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
108
114
.10.1109/70.988981
35.
Fite
,
K. B.
,
Speich
,
J. E.
, and
Goldfarb
,
M.
,
2001
, “
Transparency and Stability Robustness in Two-Channel Bilateral Telemanipulation
,”
ASME J. Dyn. Syst., Meas. Control
,
123
(
3
), pp.
400
407
.10.1115/1.1387018
36.
Çavuşoğlu
,
M. C.
,
Sherman
,
A.
, and
Tendick
,
F.
,
2002
, “
Design of Bilateral Teleoperation Controllers for Haptic Exploration and Telemanipulation of Soft Environments
,”
IEEE Trans. Robo. Autom.
,
18
(
4
), pp.
641
647
.10.1109/TRA.2002.802199
37.
De Gersem
,
G.
,
Van Brussel
,
H.
, and
Tendick
,
F.
,
2005
, “
Reliable and Enhanced Stiffness Perception in Soft-Tissue Telemanipulation
,”
Int. J. Rob. Res.
,
24
(
10
), pp.
805
822
.10.1177/0278364905057861
38.
Yokokohji
,
Y.
, and
Yoshikawa
,
T.
,
1994
, “
Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling—Formulation and Experiment
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
605
619
.10.1109/70.326566
39.
Yokokohji
,
Y.
,
Imaida
,
T.
, and
Yoshikawa
,
T.
,
1999
, “
Bilateral Teleoperation Under Time-Varying Communication Delay
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'99): Human and Environment Friendly Robots With High Intelligence and Emotional Quotients'
, Kyongju, South Korea,
Oct. 17–21
, Vol.
3
, pp.
1854
1859
.
40.
Griffiths
,
P. G.
,
Gillespie
,
R. B.
, and
Freudenberg
,
J. S.
,
2011
, “
A Fundamental Linear Systems Conflict Between Performance and Passivity in Haptic Rendering
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
75
88
.10.1109/TRO.2010.2088751
41.
Griffiths
,
P. G.
,
Gillespie
,
R. B.
, and
Freudenberg
,
J. S.
,
2008
, “
A Fundamental Tradeoff Between Performance and Sensitivity Within Haptic Rendering
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
537
548
.10.1109/TRO.2008.924256
42.
Freudenberg
,
J. S.
,
Hollot
,
C. V.
,
Middleton
,
R. H.
, and
Toochinda
,
V.
,
2003
, “
Fundamental Design Limitations of the General Control Configuration
,”
IEEE Trans. Autom. Control
,
48
(
8
), pp.
1355
1370
.10.1109/TAC.2003.815017
43.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
44.
Xu
,
J.-X.
, and
Tan
,
Y.
,
2002
, “
Robust Optimal Design and Convergence Properties Analysis of Iterative Learning Control Approaches
,”
Automatica
,
38
(
11
), pp.
1867
1880
.10.1016/S0005-1098(02)00143-7
45.
Wang
,
D.
,
2000
, “
On D-Type and P-Type ILC Designs and Anticipatory Approach
,”
Int. J. Control
,
73
(
10
), pp.
890
901
.10.1080/002071700405879
46.
Cheah
,
C.-C.
, and
Wang
,
D.
,
1998
, “
Learning Impedance Control for Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
,
14
(
3
), pp.
452
465
.10.1109/70.678454
47.
Chien
,
C.-J.
, and
Liu
,
J.-S.
,
1996
, “
A P-Type Iterative Learning Controller for Robust Output Tracking of Nonlinear Time-Varying Systems
,”
Int. J. Control
,
64
(
2
), pp.
319
334
.10.1080/00207179608921630
48.
Heinzinger
,
G.
,
Fenwick
,
D.
,
Paden
,
B.
, and
Miyazaki
,
F.
,
1992
, “
Stability of Learning Control With Disturbances and Uncertain Initial Conditions
,”
IEEE Trans. Autom. Control
,
37
(
1
), pp.
110
114
.10.1109/9.109644
49.
Park
,
K.-H.
,
Bien
,
Z.
, and
Hwang
,
D.-H.
,
1999
, “
A Study on the Robustness of a PID-Type Iterative Learning Controller Against Initial State Error
,”
Int. J. Syst. Sci.
,
30
(
1
), pp.
49
59
.10.1080/002077299292669
50.
Saab
,
S. S.
,
2003
, “
Stochastic P-Type/D-Type Iterative Learning Control Algorithms
,”
Int. J. Control
,
76
(
2
), pp.
139
148
.10.1080/0020717031000077717
51.
Horowitz
,
R.
,
1993
, “
Learning Control of Robot Manipulators
,”
ASME J. Dyn. Syst., Meas. Control
,
115
(
2B
), pp.
402
411
.10.1115/1.2899080
52.
Havlicsek
,
H.
, and
Alleyne
,
A.
,
1999
, “
Nonlinear Control of an Electrohydraulic Injection Molding Machine Via Iterative Adaptive Learning
,”
IEEE/ASME Trans. Mechatron.
,
4
(
3
), pp.
312
323
.10.1109/3516.789689
53.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
,
1984
, “
Bettering Operation of Robots by Learning
,”
J. Rob. Syst.
,
1
(
2
), pp.
123
140
.10.1002/rob.4620010203
54.
Ersal
,
T.
,
Brudnak
,
M.
, and
Stein
,
J. L.
,
2012
, “
An Iterative Learning Control Approach to Improving Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation
,”
ASME
Paper No. DSCC2012-MOVIC2012-8677.10.1115/DSCC2012-MOVIC2012-8677
55.
Filipi
,
Z. S.
,
Fathy
,
H. K.
,
Hagena
,
J.
,
Knafl
,
A.
,
Ahlawat
,
R.
,
Liu
,
J.
,
Jung
,
D.
,
Assanis
,
D. N.
,
Peng
,
H.
, and
Stein
,
J. L.
,
2006
, “
Engine-in-the-Loop Testing for Evaluating Hybrid Propulsion Concepts and Transient Emissions—HMMWV Case Study
,” SAE World Congress, Detroit, MI, Paper No. 2006-01-0443.
56.
Kim
,
Y.
,
Ersal
,
T.
,
Salvi
,
A.
,
Filipi
,
Z.
, and
Stefanopoulou
,
A.
,
2012
, “
Engine-in-the-Loop Validation of a Frequency Domain Power Distribution Strategy for Series Hybrid Powertrains
,”
IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
, Rueil-Malmaison, France,
Oct. 23–25
.
57.
Mills
,
D. L.
,
1998
, “
Adaptive Hybrid Clock Discipline Algorithm for the Network Time Protocol
,”
IEEE-ACM Trans. Networking
,
6
(
5
), pp.
505
514
.10.1109/90.731182
58.
Lee
,
T.-K.
,
Kim
,
Y.
,
Stefanopoulou
,
A.
, and
Filipi
,
Z. S.
,
2011
, “
Hybrid Electric Vehicle Supervisory Control Design Reflecting Estimated Lithium-Ion Battery Electrochemical Dynamics
,”
American Control Conference
, ACC 2011,
San Francisco, CA
,
June 29–July
, pp.
388
395
.
59.
Argonne National Laboratory
,
2002
, “
Powertrain Systems Analysis Toolkit
,” Date Accessed: Nov. 19, 2013, http://www.transportation.anl.gov/software/PSAT
60.
Kim
,
Y.
,
Salvi
,
A.
,
Siegel
,
J. B.
,
Filipi
,
Z.
,
Stefanopoulou
,
A.
, and
Ersal
,
T.
, “
Hardware-in-the-Loop Validation of a Power Management Strategy for Hybrid Powertrains
,”
Control Eng. Pract.
,
29
, pp. 277–286.10.1016/j.conengprac.2014.04.008
You do not currently have access to this content.