Equations governing different physical fields such as mechanical, acoustical, and electrical are inherently similar. This enables mechanical, thermal, and acoustical networks to be fully described with analogous electric networks. For thermo-acoustic-piezo-electric (TAP) harvesters, such a modeling approach allows the whole system to be characterized in the electrical domain and facilitates the understanding of the underlying physics. In this paper, a traveling wave thermo-acoustic-piezoelectric (TWTAP) energy harvester is considered which converts thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous regenerator. At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezo-electric diaphragm, placed at the end of the resonator, to generate electricity. The acoustic pressure oscillations are amplified by a specially designed acoustic feedback loop that introduces appropriate phasing to make the pulsations take the form of traveling waves. The behavior of this TWTAP is modeled using electrical circuit analogy. The developed model combines the descriptions of the acoustic resonator, feedback loop, and the regenerator with the characteristics of the piezo-electric diaphragm. With the help of a simulation program with integrated circuit emphasis (SPICE) code, the developed electric circuit is used to analyze the system’s stability with regard to the input heat and hence predict the necessary temperature ratio required to establish the onset of self-sustained oscillations inside the harvester’s resonator. The predictions are compared with published results obtained using root locus and numerical methods and validated against experiments. This approach provides a very practical approach to the design of TAP energy harvesters both in the time and frequency domain. Such capabilities do not exist presently in the well-known design tool design environment for low-amplitude thermo-acoustic energy conversion (DeltaEC) developed at Los Almos National Laboratory which is limited to steady-state analysis. This is in contrast to the present approach which can be applicable to both steady as well as transient analysis.

References

1.
Swift
,
G.
,
2002
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
, Acoustical Society of America,
American Institute of Physics Press
,
New York
, Chaps. 1 and 8.
2.
Swift
,
G.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
.10.1121/1.396617
3.
Backhaus
,
S.
, and
Swift
,
G.
,
2000
, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3148
3166
.10.1121/1.429343
4.
Backhaus
,
S.
, and
Swift
,
G.
,
1999
, “
A Thermoacoustic-Stirling Heat Engine
,”
Nature
,
399
, pp.
335
338
.10.1038/20624
5.
Hartley
,
R.
,
1951
, “
Electric Power Source
,” U.S. Patent No. 2,549,464.
6.
Marrison
,
W.
,
1958
, “
Heat-Controlled Acoustic Wave System
,” U.S. Patent No. 2,836,033.
7.
Ceperley
,
P. H.
,
1979
, “
A Pistonless Stirling Engine—The Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
, pp.
1508
1513
.10.1121/1.383505
8.
Ceperley
,
P. H.
,
1982
, “
Resonant Traveling Wave Engine
,” U.S. Patent No. 4,355,517.
9.
Feldman
,
K. T.
, Jr.
,
1968
, “
Review of the Literature on Sondhauss Thermoacoustic Phenomena
,”
J. Sound Vib.
,
7
(
1
), pp.
71
82
.10.1016/0022-460X(68)90158-2
10.
Regan
,
T. F.
,
Gerber
,
S. S.
, and
Roth
,
M. E.
,
2004
, “
Development of a Dynamic, End-to-End Free Piston Stirling Convertor Model
,” Glenn Research Center, Report No. NASA/TM—2004-212941.
11.
Wakeland
,
R. S.
,
2000
, “
Use of Electrodynamic Drivers in Thermoacoustic Refrigerators
,”
J. Acoust. Soc. Am.
,
107
(
2
), pp.
827
832
.10.1121/1.428265
12.
Tu
,
Q.
,
Gusev
,
V.
,
Bruneau
,
M.
,
Zhang
,
C.
,
Zhao
,
L.
, and
Guo
,
F.
,
2006
, “
Experimental and Theoretical Investigation on Frequency Characteristic of Loudspeaker-Driven Thermoacoustic Refrigerator
,”
Cryogenics
,
45
, pp.
739
746
.10.1016/j.cryogenics.2005.09.004
13.
Fan
,
L.
,
Zhang
,
S.
, and
Wang
,
B.
,
2006
, “
Coupling Between Thermoacoustic Resonance Pipes and Piezoelectric Loudspeakers Studied by Equivalent Circuit Method
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1381
1387
.10.1121/1.2225643
14.
Tu
,
Q.
,
Li
,
Q.
,
Wu
,
F.
, and
Guo
,
F. Z.
,
2003
, “
Network Model Approach for Calculating Oscillating Frequency of Thermoacoustic Prime Mover
,”
Cryogenics
,
43
, pp.
351
357
.10.1016/S0011-2275(03)00090-0
15.
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Onset of Self-Excited Oscillations of Traveling Wave Thermo-Acoustic-Piezoelectric Energy Harvester Using Root-Locus Analysis
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011003
.10.1115/1.4004679
16.
de Waele
,
A. T. A. M.
,
2009
, “
Basic Treatment of Onset Conditions and Transient Effects in Thermoacoustic Stirling Engines
,”
J. Sound Vib.
,
325
, pp.
974
988
.10.1016/j.jsv.2009.03.043
17.
Nagel
,
L. W.
, and
Pederson
,
D. O.
,
1973
, “
SPICE (Simulation Program With Integrated Circuit Emphasis)
,” University of California, Berkeley, Memorandum No. ERL-M382.
18.
Martini
,
W. R.
,
Johnson
,
R. P.
, and
White
,
M. A.
,
1974
, “
Stirling Engine Power System and Coupler
,” U.S. Patent No. 3,833,388.
19.
Keolian
,
R. M.
, and
Bastyr
,
K. J.
,
2006
, “
Thermoacoustic Piezoelectric Generator
,” U.S. Patent No. 7,081,699.
20.
Symko
,
O. G.
,
Abdel-Rahman
,
E.
,
Kwon
,
Y. S.
,
Emmi
,
M.
, and
Behunin
,
R.
,
2004
, “
Design and Development of High-Frequency Thermoacoustic Engines for Thermal Management in Microelectronics
,”
Microelectron. J.
,
35
, pp.
185
191
.10.1016/j.mejo.2003.09.017
21.
Symko
,
O.
, and
Abdel-Rahman
,
E.
,
2007
, “
High Frequency Thermoacoustic Refrigerator
,” U.S. Patent No. 7,240,495.
22.
Matveev
,
K. I.
,
Wekin
,
A.
,
Richards
,
C. D.
, and
Shafrei-Tehrany
,
N.
,
2007
, “
On the Coupling Between Standing-Wave Thermoacoustic Engine and Piezoelectric Transducer
,”
ASME International Mechanical Engineering Congress and Exposition
,
IMECE2007
,
Seattle, WA
, Nov. 11–15, Paper No. IMECE2007-41119. 10.1115/IMECE2007-41119
23.
Smoker
,
J.
,
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Energy Harvesting From a Standing Wave Thermoacoustic-Piezoelectric Resonator
,”
J. Appl. Phys.
,
111
(
10
), p.
104901
.10.1063/1.4712630
24.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Energy Harvesting of Thermoacoustic-Piezo Systems With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061015
.10.1115/1.4005834
25.
Nouh
,
M., O.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2013
, “
Analysis and Optimization of Thermoacoustic-Piezoelectric Energy Harvesters: An Electrical Circuit Analogy Approach
,” Proceedings of the
SPIE
Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
, Mar. 10, Vol.
8688
, p.
86880L
. 10.1117/12.2009876
26.
Zhao
,
D.
, and
Chew
,
Y.
,
2012
, “
Energy Harvesting From a Convection-Driven Rijke-Zhao Thermoacoustic Engine
,”
J. Appl. Phys.
,
112
(
11
), p.
114507
.10.1063/1.4767914
27.
Zhao
,
D.
,
2013
, “
Waste Thermal Energy Harvesting From a Convection-Driven Rijke–Zhao Thermo-Acoustic-Piezo System
,”
Energy Convers. Manage.
,
66
, pp.
87
97
.10.1016/j.enconman.2012.09.025
28.
Nilsson
,
J.
, and
Riedel
,
S.
,
2011
,
Electric Circuits
, 9th ed.,
Prentice Hall
,
Upper Saddle River, NJ
, Chap. 4.
29.
Roshwalb
,
A.
,
2011
, “
Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment
,” M.S. thesis, University of Maryland, College Park, MD.
30.
Ward
,
B.
,
Clark
,
J.
, and
Swift
,
G.
,
2012
, “
Design Environment for Low-Amplitude Thermoacoustic Energy Conversion DeltaEC
,” Version 6.3b11, Users Guide, Los Alamos National Lab, Feb. 13, 2012, http://www.lanl.gov/thermoacoustics/
You do not currently have access to this content.