This paper proposes a systematic procedure to address the limit cycle prediction of a Nonlinear Takagi–Sugeno–Kang (NTSK) fuzzy control system with adjustable parameters. NTSK fuzzy can be linearized by describing function method. The stability of the equivalent linearized system is then analyzed using the stability equations and the parameter plane method. After that the gain–phase margin (PM) tester has been added, then gain margin (GM) and phase margin for limit cycle are analyzed. Using NTSK fuzzy control system can help to have fewer rules. In order to analyze the stability with the same technique of stability analysis, the results of NTSK fuzzy control system will be compared with Dynamic fuzzy control system [1]. Computer simulations show differences between both systems.

References

1.
Perng
,
J. W.
,
Wu
,
B. F.
,
Chin
,
H.
, and
Lee
,
T. T.
,
2004
, “
Gain-Phase Margin Analysis of Dynamic Fuzzy Control Systems
,”
IEEE Trans. Syst., Man, Cybern. Part B: Cybern.
,
34
(
5
), pp.
2133
2139
.10.1109/TSMCB.2004.831772
2.
Ban
,
X.
,
Gao
,
X. Z.
,
Huang
,
X.
, and
Vasilakosc
,
A. V.
,
2007
, “
Stability Analysis of the Simplest Takagi–Sugeno Fuzzy Control System Using Circle Criterion
,”
Inf. Sci.
,
177
(
20
), pp.
4387
4409
.10.1016/j.ins.2007.03.014
3.
Chuang
,
C. C.
,
Su
,
C. F.
, and
Chen
,
S. S.
,
2001
, “
Robust TSK Fuzzy Modeling for Function Approximation With Outliers
,”
IEEE Trans. Fuzzy Syst.
,
9
(
6
), pp.
810
821
.10.1109/91.971730
4.
Rajesh
,
R.
, and
Kaimal
,
M.
,
2006
, “
Variable Gain Takagi–Sugeno Fuzzy Logic Controllers
,”
Informatica
,
17
(
3
), pp.
427
444
. Available at http://dl.acm.org/citation.cfm?id=1413860
5.
Ding
,
Y.
,
Ying
,
H.
, and
Shao
,
S.
,
2003
, “
Typical Takagi–Sugeno PI and PD Fuzzy Controllers: Analytical Structures and Stability Analysis
,”
Inf. Sci.
,
151
, pp.
245
262
.10.1016/S0020-0255(02)00302-X
6.
Precup
,
R. E.
, and
Preitl
,
S.
,
2004
, “
Describing Function Method for PI-Fuzzy Controled Systems Stability Analysis
,” The Annals of Dunarea de Jos University of Galati Fascicle III.
7.
Kim
,
E.
,
Lee
,
H.
, and
Park
,
M.
,
2000
, “
Limit-Cycle Prediction of a Fuzzy Control System Based on Describing Function Method
,”
IEEE Trans. Fuzzy Syst.
,
8
(
1
), pp.
11
22
.10.1109/91.824762
8.
Perng
,
J. W.
,
Wu
,
B. F.
,
Liao
,
T. Y.
, and
Lee
,
T. T.
,
2007
,
Robust Stability Analysis of a Fuzzy Vehicle Lateral Control System Using Describing Function Method
, ASC Vol.
42
,
Springer–Verlag
,
Berlin
, pp.
769
779
.
9.
Perng
,
J. W.
,
Ma
,
L. S.
, and
Wu
,
B. F.
,
2010
, “
Limit Cycle Prediction of a Neurocontrol Vehicle System Based on Gain-Phase Margin Analysis
,”
Neural Comput. Appl.
,
19
(
4
), pp.
565
571
.10.1007/s00521-009-0319-2
You do not currently have access to this content.