Winding inductances of an exciter machine of brushless generator normally consist of nonsinusoidal terms versus rotor position angle, so evaluations of the inductances necessitate detailed modeling and complicated parameter identification procedures. In this paper, an adaptive particle swarm optimization (APSO), which is a novel heuristic computation technique, is proposed to identify parameters of an exciter machine. The proposed approach evaluates the model parameters just knowing the main field impedance, measured exciter field voltage and current. APSO is employed to solve the optimization problem of minimizing the difference between output quantities (exciter field current) of the model and real systems. Two modifications are incorporated into the conventional particle swarm optimization (PSO) scheme that prevents local convergence and provides excellent quality of final result. Performance of the proposed APSO is compared with those of the real-coded genetic algorithm (GA) and PSO with linearly decreasing inertia weight (LDW-PSO), in terms of the parameter accuracy and convergence speed. Simulation results illustrated in the paper show that the proposed APSO is more successful in comparison with LDW-PSO and GA.

References

1.
Darabi
,
A.
,
Tindall
,
C.
, and
Ferguson
,
S.
, 2004, “
Finite-Element Time-Step Coupled Generator, Load, AVR and Brushless Exciter Modelling
,”
IEEE Trans. Energy Convers.
,
19
, pp.
258
64
.
2.
Darabi
,
A.
, and
Tindall
,
C.
, 2002, “
Brushless Exciter Modeling For Small Salient Pole Alternators Using Finite Elements
,”
IEEE Trans. Energy Convers.
,
17
, pp.
306
312
.
3.
Aliprantis
,
D. C.
,
Sudhoff
,
S. D.
, and
Kuhn
,
B.
, 2006, “
Genetic Algorithm-Based Parameter Identification of a Hysteretic Brushless Exciter Model
,”
IEEE Trans. Energy Convers.
,
21
, pp.
148
54
.
4.
IEEE Std. 115, 1995, “Test Procedures for Synchronous Machines.”
5.
Ljung
,
L.
, 1987,
System Identification: Theory for the User
,
Prentice-Hall
,
Englewood Cliffs, NJ.
6.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Network
, pp.
1942
1948
7.
Clerc
,
M.
, and
Kennedy
,
J.
, 2002, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
,
6
, pp.
58
73
.
8.
Kennedy
,
J.
,
Eberhart
,
R. C.
, and
Shi
,
Y.
, 2001,
Swarm Intelligence
,
Morgan Kaufman
,
San Francisco
.
9.
Hancock
,
N. N.
, 1974,
Matrix Analysis of Electrical Machinery
,
Pergamon
,
Oxford, U.K
.
10.
Holland
,
J. H.
, 1992,
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
,
MIT
,
Cambridge, MA
.
11.
Angeline
,
P. J.
, 1998, “
Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences
,”
Lect. Notes Comput. Sci.
,
1447
, pp.
601
610
.
12.
Chang
,
Y. P.
, and
Ko
,
C. N.
, 2009, “
A PSO Method With Nonlinear Time-Varying Evolution Based on Neural Network for Design of Optimal Harmonic Filters
,”
Expert Sys. Applic.
,
36
, pp.
6809
6816
.
13.
Jiao
,
B.
,
Lian
,
Z.
, and
Gu
,
X. A.
, 2008, “
Dynamic Inertia Weight Particle Swarm Optimization Algorithm
,”
Chaos, Solitons Fractals
,
37
, pp.
698
705
.
14.
Yang
,
X.
,
Yuan
,
J.
,
Yuan
,
J.
, and
Mao
,
H.
, 2007, “
A Modified Particle Swarm Optimizer With Dynamic Adaptation
,”
Appl. Math. Comput.
,
189
, pp.
1205
1213
.
15.
Chatterjee
,
A.
, and
Siarry
,
P.
, 2006, “
Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization
,”
Comput. Oper. Res.
,
33
, pp.
859
871
.
16.
Shi
,
Y.
, and
Eberhart
,
R. C.
, 1998, “
Parameter Selection in Particle Swarm Optimization
,”
Proceedings of 7th Annual Conference on Evolutionary Programming
, New York, pp.
591
600
.
17.
Ratnaweera
,
A.
,
Halgamuge
,
S. K.
, and
Watson
,
H. C.
, 2004, “
Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients
,”
IEEE Trans. Evol. Comput.
,
8
, pp.
240
255
.
18.
Modares
,
H.
,
Alfi
,
A.
, and
Fateh
,
M. M.
, 2010, “
Parameter Identification of Chaotic Dynamic Systems through an Improved Particle Swarm Optimization
,”
Expert Syst. Applic.
,
37
, pp.
3714
3720
.
19.
Zhan
,
Z. H.
, and
Zhang
,
J.
, 2008, “
Adaptive Particle Swarm Optimization
,”
Lect. Notes Comput. Sci.
,
5217
, pp.
227
234
.
20.
Modares
,
H.
,
Alfi
,
A.
, and
Naghibi Sistani
,
M. B.
, 2010, “
Parameter Estimation of Bilinear Systems Based on an Adaptive Particle Swarm Optimization
,”
Eng. Applic. Artifi. Intell.
,
23
, pp.
1105
1111
.
21.
Liu
,
M.
,
Shin
,
D.
, and
Kang
,
H. L.
, 2009, “
Parameter Estimation in Dynamic Biochemical Systems Based on Adaptive Particle Swarm Optimization
,”
Proceedings of the 7th International Conference on Information, Communications and Signal Processing
, Macau, pp.
1
5
.
22.
Modares
,
H.
, and
Alfi
,
A.
, 2009, “
A Particle Swarm Optimization Approach for Parameter Identification of Lorenz Chaotic System
,”
35th Annual IEEE Conference on Industrial Electronics Society
, Portugal, pp.
3303
3308
.
23.
Schaffer
,
J. D.
,
Caruana
,
R. A.
,
Eshelman
,
L. J.
, and
Das
,
R. A.
, 1989, “
Study of Control Parameters Affecting Online Performance on Genetic Algorithms for Function Optimization
,”
Proceedings of 3th International Conference on Genetic Algorithm
, pp.
51
60
.
You do not currently have access to this content.