Abstract

The focus of this work is on the development of a framework permitting the unification of generalized polynomial chaos (gPC) with the linear moment propagation equations, to accurately characterize the state distribution for linear systems subject to initial condition uncertainty, Gaussian white noise excitation and parametric uncertainty which is not required to be Gaussian. For a fixed value of parameters, an ensemble of moment propagation equations characterize the distribution of the state vector resulting from Gaussian initial conditions and stochastic forcing, which is modeled as Gaussian white noise. These moment equations exploit the gPC approach to describe the propagation of a combination of uncertainties in model parameters, initial conditions and forcing terms. Sampling the uncertain parameters according to the gPC approach, and integrating via quadrature, the distribution for the state vector can be obtained. Similarly, for a fixed realization of the stochastic forcing process, the gPC approach provides an output distribution resulting from parametric uncertainty. This approach can be further combined with moment propagation equations to describe the propagation of the state distribution, which encapsulates uncertainties in model parameters, initial conditions and forcing terms. The proposed techniques are illustrated on two benchmark problems to demonstrate the techniques’ potential in characterizing the non-Gaussian distribution of the state vector.

References

1.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
, 2004, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Safety
,
85
(
1–3
), pp.
11
19
; alternative Representations of Epistemic Uncertainty.
2.
Adelman
,
H. M.
, and
Haftka
,
R. T.
, 1986, “
Sensitivity Analysis of Discrete Structural Systems
,”
AIAA J.
,
24
(
5
), pp.
823
832
.
3.
Xie
,
L.
,
Soh
,
Y. C.
, and
de Souza
,
C.
, 1994, “
Robust Kalman Filtering for Uncertain Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
39
(
6
), pp.
1310
1314
.
4.
Xia
,
Y.
, 2001, “
Learning About Predictability: The Effects of Parameter Uncertainty on dynamic asset allocation
,”
J. Finance
,
56
(
1
), pp.
205
246
.
5.
Rao
,
K. S.
, 2005, “
Uncertainty Analysis in Atmospheric Dispersion Modeling
,”
Pure Appl. Geophys.
,
162
, pp.
1893
1917
.
6.
Stott
,
P. A.
, and
Kettleborough
,
J. A.
, 2002, “
Origins and Estimates of Uncertainty in Predictions of Twenty-First Century Temperature Rise
,”
Nature
,
416
, pp.
723
726
.
7.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng., series D
,
82
, pp.
35
45
.
8.
Kolmogorov
,
A. N.
, 1986,
Probability Theory and Mathematical Statistics
,
Kluwer Academic Publisher
,
Moscow
.
9.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
10.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), pp.
619
644
.
11.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
NY
.
12.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2006, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
,
42
(
5
), pp.
789
795
.
13.
Nagy
,
Z.
, and
Braatz
,
R.
, 2007, “
Distributional Uncertainty Analysis Using Power Series and Polynomial Chaos Expansions
,”
J. Process Control
,
17
(
3
), pp.
229
240
,
14.
Fisher
,
J.
, and
Bhattacharya
,
R.
, 2009, “
Linear Quadratic Regulation of Systems With Stochastic Parameter Uncertainties
,”
Automatica
,
45
, pp.
2831
2841
.
15.
Singh
,
T.
,
Singla
,
P.
, and
Konda
,
U.
, 2010, “
Polynomial Chaos Based Design of Robust Input Shapers
,”
J. Dyn. Syst., Meas., Control
,
132
(
5
), p.
051010
.
16.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
17.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1979,
Optimal Filtering
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
193
222
.
18.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N.
, 2001,
Sequential Monte-Carlo Methods in Practice
,
Springer-Verlag
, pp.
6
14
.
19.
Iyengar
,
R. N.
, and
Dash
,
P. K.
, 1978, “
Study of the Random Vibration of Nonlinear Systems by the Gaussian Closure Technique
,”
ASME J. Appl. Mech.
,
45
, pp.
393
399
.
20.
Roberts
,
J.
B.
and
Spanos
,
P. D.
, 1990,
Random Vibration and Statistical Linearization
,
Wiley
,
New York
, pp.
122
176
.
21.
Lefebvre
,
T.
,
Bruyninckx
,
H.
, and
Schuller
,
J. D.
, 2004, “
Kalman Filters of Non-Linear Systems: A Comparison of Performance
,”
Int. J. Control
,
77
(
7
), pp.
639
653
.
22.
Lefebvre
,
T.
,
Bruyninckx
,
H.
, and
Schuller
,
J. D.
, 2002, “
Comment on a New Method for the Nonlinear Transformations of Means and Covariances in Filters and Estimators
,”
IEEE Tran. Autom. Control
,
47
(
8
), pp.
1406
1409
.
23.
Helton
,
J.
,
Johnson
,
J.
,
Sallaberry
,
C.
, and
Storlie
,
C.
, 2006, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1175
1209
.
24.
Daum
,
F. E.
, and
Huang
,
J.
, 2003, “
Curse of Dimensionality and Particle Filters
,”
Aerospace Conference, Proceedings of the IEEE
2003,
4
, March 8–15, pp.
1979
1993
.
25.
Cameron
,
R.
, and
Martin
,
W. T.
, 1947, “
The Orthogonal Development of Non-Linear Functionals in Series Of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.
26.
Luenberger
,
D. G.
, 1969,
Optimization by Vector Space Methods
,
Wiley-Interscience
,
New York
.
27.
LeMaitre
,
O.
,
Knio
,
O.
,
Najm
,
H.
, and
Ghanem
,
R.
, 2001, “
A Stochastic Projection Method for Fluid Flow: I. Basic Formulation
,”
J. Comput. Phys.
,
173
, pp.
481
511
.
LeMaitre
,
O.
,
Knio
,
O.
,
Najm
,
H.
, and
Ghanem
,
R.
, 2001, “
A Stochastic Projection Method for Fluid Flow: I. Basic Formulation
,”
J. Comput. Phys.
,
173
, pp.
481
511
.
28.
Xiu
,
D.
, and
Hesthaven
,
J.
, 2005, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
, pp.
1118
1139
.
29.
Berveiller
,
M.
,
Sudret
,
B.
, and
Lemaire
,
M.
, 2006, “
Stochastic finite element: a non intrusive approach by regression
,”
Rev. Eur. Mec. Numer.
,
15
, pp.
81
92
.
30.
Dalbey
,
K.
,
Patra
,
A.
,
Pitman
,
E.
,
Bursik
,
M.
, and
Sheridan
,
M.
, 2008, “
Input Uncertainty Propagation Methods and Hazard Mapping of Geophysical Mass Flows
,”
J. Geophys. Res.
,
113
.
31.
Tenne
,
D.
, and
Singh
,
T.
, 2004, “
Efficient Minimax Control Design for Prescribed Parameter Uncertainty
,”
J. Guid. Control Dyn.
,
27
(
6
), pp.
1009
1016
.
32.
Bryson
,
A. E.
, and
Mills
,
R. A.
, 1998, “
Linear-Quadratic-Gaussian Controllers With Specified Parameter Robustness
,”
J. Guid. Control Dyn.
,
21
(
1
), pp.
11
18
.
You do not currently have access to this content.