Abstract

In recent years, algorithms have been developed to help automate the production of dynamic system models. Part of this effort has been the development of algorithms that use modeling metrics for generating minimum complexity models with realization preserving structure and parameters. Existing algorithms, add or remove ideal compliant elements from a model, and consequently do not equally emphasize the contribution of the other fundamental physical phenomena, i.e., ideal inertial or resistive elements, to the overall system behavior. Furthermore, these algorithms have only been developed for linear or linearized models, leaving the automated production of models of nonlinear systems unresolved. Other model reduction techniques suffer from similar limitations due to linearity or the requirement that the reduced models be realization preserving. This paper presents a new modeling metric, activity, which is based on energy. This metric is used to order the importance of all energy elements in a system model. The ranking of the energy elements provides the relative importance of the model parameters and this information is used as a basis to reduce the size of the model and as a type of parameter sensitivity information for system design. The metric is implemented in an automated modeling algorithm called model order reduction algorithm (MORA) that can automatically generate a hierarchical series of reduced models that are realization preserving based on choosing the energy threshold below which energy elements are not included in the model. Finally, MORA is applied to a nonlinear quarter car model to illustrate that energy elements with low activity can be eliminated from the model resulting in a reduced order model, with physically meaningful parameters, which also accurately predicts the behavior of the full model. The activity metric appears to be a valuable metric for automating the reduction of nonlinear system models—providing in the process models that provide better insight and may be more numerically efficient.

1.
IMAGINE S.A.
, 2003, AMESIM Reference Manual, Version 4.1.
2.
The University of Twente-Controllab Products BV
, 2005, 20-SIM Pro Users’ Manual, Version 3.6.
3.
Dynasim AB
, 2006, DYMOLA Users’ Manual, Version 6.0.
4.
The MathWorks Inc.
, 2005, MATLAB/SIMULINK User’s Manual, Version 7.
5.
MSC Corp.
, 2004, EASY5 Users’ Manual, Version 2004.
6.
MSC Corp.
, 2005, ADAMS Users’ Manual.
7.
Ermer
,
G.
,
Goodman
,
E.
,
Hawkins
,
R.
,
McDowell
,
J.
,
Rosenberg
,
R.
, and
Sticklen
,
J.
, 1993, “
Steps Towards Integrating Function-Based Models and Bond Graphs for Conceptual Design in Engineering
,”
Symposium on Automated Modeling for Design, ASME Winter Annual Meeting
,
ASME
,
New York
, DSC-Vol.
47
, pp.
47
62
.
8.
Falkenhainer
,
B.
, and
Forbus
,
K.
, 1992, “
Composing Task Specific Models
,”
Symposium on Automated Modeling, ASME Winter Annual Meeting
, New York, DSC-Vol.
41
, pp.
1
9
.
9.
Linkens
,
D. A.
,
Xia
,
S.
, and
Bennett
,
S.
, 1993, “
A Computer-Aided Qualitative Modeling and Analysis Environment Using Unified Principles (QREMS)
,”
Proceedings of the 1993 International Conference on Bond Graph Modeling
,
J. J.
Granda
and
F. E.
Cellier
, eds.,
SCS
,
San Diego, CA
, Vol.
25
, No. 2, pp.
53
58
.
10.
Tseng
,
Y. T.
, 1991, “
The Automation of Physical System Modeling: Modeling Strategies and AI Implementation
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
11.
Wilson
,
B. H.
, and
Stein
,
J. L.
, 1995, “
An Algorithm for Obtaining Proper Models of Distributed and Discrete Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
(
4
), pp.
534
540
.
12.
Wilson
,
B. H.
, 1992, “
Model Building Assistant: An Automated Modeling Tool for Machine-Tool Drive-Trains
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
13.
Ferris
,
J. B.
, and
Stein
,
J. L.
, 1995, “
Development of Proper Models of Hybrid Systems: A Bond Graph Formulation
,”
Proceedings of the 1995 International Conference on Bond Graph Modeling
, Jan., Las Vegas, NV,
SCS
,
San Diego, CA
, pp.
43
48
.
14.
Ferris
,
J. B.
,
Stein
,
J. L.
, and
Bernitsas
,
M. M.
, 1998, “
Development of Proper Models of Hybrid Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
3
), pp.
328
333
.
15.
Walker
,
D. G.
,
Stein
,
J. L.
, and
Ulsoy
,
A. G.
, 2000, “
An Input-Output Criterion for Linear Model Deduction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
507
513
.
16.
Stein
,
J. L.
, and
Louca
,
L. S.
, 1996, “
A Template-Based Modeling Approach for System Design: Theory and Implementation
,”
Transactions of the Society for Computer Simulation International
,
SCS
,
San Diego, CA
.
17.
Fertis
,
D. G.
, 1995,
Mechanical and Structural Vibrations
,
Wiley
,
New York
.
18.
Kokotovic
,
P.
, and
Sannuti
,
P.
, 1968, “
Singular Perturbation Method for Reducing Model Order in Optimal Control Design
,”
IEEE Trans. Autom. Control
0018-9286,
13
(
4
), pp.
377
384
.
19.
Kokotovic
,
P. V.
,
O’Malley
,
R. E.
, Jr.
, and
Sannuti
,
P.
, 1976, “
Singular Perturbations and Order Reduction in Control Theory—An Overview
,”
Automatica
0005-1098,
12
(
2
), pp.
123
132
.
20.
Margolis
,
D. L.
, and
Young
,
G. E.
, 1977, “
Reduction of Models of Large Scale Lumped Structures Using Normal Modes and Bond Graphs
,”
J. Franklin Inst.
0016-0032,
304
(
1
), pp.
65
79
.
21.
Karhunen
,
K.
, 1946, “
Zur Spektraltheorie Stochastischer Prozesse
,”
Annales Academiae Scientarum Fennicae
,
37
, p.
1
.
22.
Loève
,
M. M.
, 1955,
Probability Theory
,
Van Nostrand
,
Princeton, NJ
.
23.
Moore
,
B. C.
, 1981, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
26
(
1
), pp.
17
32
.
24.
Skelton
,
R. E.
, and
Yousuff
,
A.
, 1983, “
Component Cost Analysis of Large Scale Systems
,”
Int. J. Control
0020-7179,
37
(
2
), pp.
285
304
.
25.
Kung
,
S.
, 1978, “
A New Identification and Model Reduction Algorithm via Singular Value Decompositions
,”
Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers
, Nov. 6–8,
IEEE
,
New York
, pp.
705
714
.
26.
Kung
,
S. -Y.
, and
Lin
,
D. W.
, 1981, “
Optimal Hankel-Norm Model Reductions: Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
26
(
4
), pp.
832
852
.
27.
Safonov
,
M. G.
,
Chiang
,
R. Y.
, and
Limebeer
,
D. J. N.
, 1990, “
Optimal Hankel Model Reduction for Nonminimal Systems
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
4
), pp.
496
502
.
28.
Ersal
,
T.
,
Fathy
,
H.
,
Louca
,
L. S.
,
Rideout
,
D. G.
, and
Stein
,
J. L.
, 2007, “
A Review of Proper Modeling Techniques
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA,
American Society of Mechanical Engineers
,
New York
.
29.
Rosenberg
,
R. C.
, and
Zhou
,
T.
, 1988, “
Power-Based Model Insight
,”
Proceedings of the 1988 ASME Winter Annual Meeting, Symposium on Automated Modeling for Design
,
ASME
,
New York
, Book No. G00460, pp.
61
67
.
30.
Rosencode Associates Inc.
, 1987, ENPORT Reference Manual.
31.
LorSim Simulation
, 2004, MS1 Users’ Manual, Version 5.1.
32.
Brown
,
F. T.
, 2006,
Engineering System Dynamics: A Unified Graph-Centered Approach
, 2nd ed.,
CRC
,
Boca Raton, FL
.
33.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
, 2006,
System Dynamics: Modeling and Simulation of Mechatronic Systems
, 4th ed.,
Wiley
,
New York
.
34.
Rosenberg
,
R. C.
, and
Karnopp
,
D. C.
, 1983,
Introduction to Physical System Dynamics
,
McGraw-Hill
,
New York
.
35.
Louca
,
L. S.
, 1998, “
An Energy-Based Model Reduction Methodology for Automated Modeling
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
36.
Segel
,
L.
, 1994, “
Analysis and Prediction of the Dynamic Behavior of Motor Vehicles
,” Lecture Notes for ME 558 at the Department of Mechanical Engineering and Applies Mechanics, The University of Michigan, Ann Arbor, MI.
37.
Cadsim Engineering
, 2001, CAMP_G Users’ Manual.
38.
Louca
,
L. S.
, and
Stein
,
J. L.
, 2002, “
Proceedings of the Institution of Mechanical Engineers, Part I
,”
Journal of Systems and Control Engineering
0959-6518, Special Issue on bond graphs,
216
(
1
), pp.
73
83
.
39.
Christensen
,
B. G.
,
Ferris
,
J. B.
, and
Stein
,
J. L.
, 2000, “
An Energy-Enhanced Design of Experiments Method Applied to Multi-Body Models
,”
Proceedings of the 2000 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–10,
ASME
,
New York
, DSC-Vol.
69-1
, pp.
527
534
.
40.
Christensen
,
B. G.
,
Ferris
,
J. B.
, and
Stein
,
J. L.
, 2000, “
An Energy-Enhanced Design of Experiments Method
,”
Proceedings of the 2000 ASME IMECE Conference, Dynamic Systems and Control Division
, Orlando, FL,
ASME
,
New York
, DSC-Vol.
69-2
, pp.
795
799
.
41.
Heiberger
,
R. M.
, 1989,
Computation for the Analysis of Designed Experiments
,
Wiley
,
New York
.
42.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
, 6th ed.,
Wiley
,
New York
.
43.
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
, 2004, “
Simulation-Based Optimal Design of Heavy Trucks by Model-Based Decomposition: An Extensive Analytical Target Cascading Case Study
,”
International Journal of Heavy Vehicle Systems (Special Issue on Advances in Ground Vehicle Simulation)
,
11
(
3/4
), pp.
403
433
.
44.
Louca
,
L. S.
,
Rideout
,
D. G.
,
Stein
,
J. L.
, and
Hulbert
,
G. M.
, 2004, “
Generating Proper Dynamic Models for Truck Mobility and Handling
,”
International Journal of Heavy Vehicle Systems
1741-5152, Special Issue on Advances in Ground Vehicle Simulation,
11
(
3/4
), pp.
209
236
.
45.
Louca
,
L. S.
, and
Yildir
,
U. B.
, 2005, “
Modeling and Reduction Techniques for Studies of Integrated Hybrid Vehicle Systems
,”
Journal of Mathematical and Computer Modeling of Dynamic Systems
,
12
(
2-3
), pp.
203
218
.
46.
Sendur
,
P.
,
Stein
,
J. L.
,
Peng
,
H.
, and
Louca
,
L. S.
, 2003, “
An Algorithm for the Selection of Physical System Model Order Based on Desired State Accuracy and Computational Efficiency
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition
, Washington, DC,
American Society of Mechanical Engineers
,
New York
.
47.
Sendur
,
P.
,
Stein
,
J. L.
,
Louca
,
L. S.
, and
Peng
,
H.
, 2003, “
An Algorithm for the Assessment of Reduced Dynamic System Models for Design
,”
Proceedings of the International Conference on Simulation and Multimedia in Engineering Education
, Orlando, FL,
Society for Modeling and Simulation International
,
San Diego, CA
, pp.
92
101
.
48.
Sendur
,
P.
,
Stein
,
J. L.
,
Louca
,
L. S.
, and
Peng
,
H.
, 2002, “
A Model Accuracy and Validation Algorithm
,”
Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA,
American Society of Mechanical Engineers
,
New York
.
49.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2000, “
Target Cascading in Optimal System Design
,”
26th Design Automation Conference
, Baltimore, MD, Sept., Paper No. 14265.
You do not currently have access to this content.