An autonomous vibration controller that adapts to variations in a system’s mass, stiffness, and excitation, and that maximizes dissipation through synchronized switching is described. In the model and laboratory measurements, a cantilever beam is driven through base excitation and two piezoelectric elements are attached to the beam for vibration control purposes. The distributed-parameter model for the beam-element system is discretized by using Galerkin’s method, and time histories of the system’s response describe the controller’s attenuation characteristics. The system is piecewise linear, and a state-to-state modal analysis method is developed to simulate the coupled dynamics of the beam and piezoelectric circuit by mapping the generalized coordinates between the sets of modes for the open-switch and closed-switch configurations. In synchronized switching control, the elements are periodically switched to an external resonant shunt, and the instants of optimal switching are identified through a filtered velocity signal. The controller adaptively aligns the center frequency of a bandpass filter to the beam’s fundamental frequency through a fuzzy logic algorithm in order to maximize attenuation even with minimal a priori knowledge of the excitation or the system’s mass and stiffness parameters. In implementation, the controller is compact owing to its low inductance and computational requirement. The adaptive controller attenuates vibration over a range of excitation frequencies and is robust to variations in system parameters, thus outperforming traditional synchronized switching.

1.
Franchek
,
M. A.
,
Ryan
,
M. W.
, and
Bernhard
,
R. J.
, 1996, “
Adaptive Passive Vibration Control
,”
J. Sound Vib.
0022-460X,
189
(
5
), pp.
565
585
.
2.
Davis
,
C. L.
, and
Lesieutre
,
G. A.
, 2000, “
An Actively Tuned Solid-State Vibration Absorber Using Capacitive Shunting of Piezoelectric Stiffness
,”
J. Sound Vib.
0022-460X,
232
(
3
), pp.
601
617
.
3.
Kidner
,
M. R. F.
, and
Brennan
,
M. J.
, 2002, “
Varying the Stiffness of a Beam-Like Neutralizer Under Fuzzy Logic Control
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
90
99
.
4.
Lesieutre
,
G. A.
, 1998, “
Vibration Damping and Control Using Shunted Piezoelectric Materials
,”
Shock Vib. Dig.
0583-1024,
30
(
3
), pp.
187
195
.
5.
Forward
,
R. L.
, 1979, “
Electronic Damping of Vibrations in Optical Structures
,”
Appl. Opt.
0003-6935,
18
(
5
), pp.
690
697
.
6.
Hagood
,
N. W.
, and
von Flotow
,
A.
, 1991, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
0022-460X,
146
(
2
), pp.
243
268
.
7.
Corr
,
L.
, and
Clark
,
W. W.
, 2002, “
Comparison of Low-Frequency Piezoelectric Switching Shunt Techniques for Structural Damping
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
370
376
.
8.
Wu
,
S.
, 1996, “
Piezoelectric Shunts With Parallel RL Circuit for Structural Damping and Vibration Control
,”
Proc. SPIE
0277-786X,
2720
, pp.
259
269
.
9.
Wu
,
S.
, 1997, “
Structural Vibration Damping Experiments Using Improved Piezoelectric Shunts
,”
Proc. SPIE
0277-786X,
3045
, pp.
40
50
.
10.
Caruso
,
G.
, 2001, “
A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1059
1068
.
11.
Fleming
,
A. J.
,
Behrens
,
S.
, and
Moheimani
,
S. O. R.
, 2003, “
Reducing the Inductance Requirements of Piezoelectric Shunt Damping
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
57
64
.
12.
Park
,
C. H.
, and
Inman
,
D. J.
, 2003, “
Enhanced Piezoelectric Shunt Design
,”
Shock Vib.
1070-9622,
10
(
2
), pp.
127
133
.
13.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Ching
,
G.
, 1999, “
Semi-Passive Damping Using Continuous Switching of a Piezoelectric Device
,”
Proc. SPIE
0277-786X,
3672
, pp.
104
111
.
14.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Bassaler
,
H.
, 2000, “
Enhanced Semi Passive Damping Using Continuous Switching of a Piezoelectric Device
,”
Smart Mater. Struct.
0964-1726,
3989
, pp.
288
299
.
15.
Corr
,
L.
, and
Clark
,
W. W.
, 2003, “
A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator
,”
ASME J. Vibr. Acoust.
0739-3717,
125
, pp.
214
222
.
16.
Clark
,
W.
, and
Schoenly
,
J.
, 2005, “
Evaluation of Performance Indices for Tuning the Switch Timing of Pulse-Switched Piezoelectric Shunts for Vibration Control
,”
Smart Structures and Materials 2005: Damping and Isolation
, Vol.
5760
,
SPIE
,
Bellingham, VA
, pp.
402
412
.
17.
Hollkamp
,
J. J.
and
Starchville
,
T. F.
, Jr.
, 1994, “
A Self-Tuning Piezoelectric Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
559
566
.
18.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
, 2003, “
Adaptive Piezoelectric Shunt Damping
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
36
38
.
19.
Niederberger
,
D.
,
Fleming
,
A. J.
,
Moheimani
,
S. O. R.
, and
Morari
,
M.
, 2004, “
Adaptive Multi-Mode Resonant Piezoelectric Shunt Damping
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1025
1035
.
20.
1988, “
An American National Standard: IEEE Standard on Piezoelectricity
,” The Institute of Electrical and Electronics Engineers, Inc.
21.
Corr
,
L.
, 2001, “
Investigation of Real-Time Switching of Piezoceramic Shunts for Structural Vibration Control
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.
22.
Devasia
,
S.
,
Mcressi
,
T.
,
Paden
,
B.
, and
Bayo
,
E.
, 1992, “
Piezo-Electric Actuator Design for Vibration Suppression: Placement and Sizing
,”
Proceedings of the 31st Conference on Decision and Control
, Tuscon, AZ, pp.
1367
1372
.
23.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillian
,
New York
, p.
10022
.
24.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
, 1990, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
(
3
), pp.
327
354
.
25.
Passion
,
K.
, and
Yurkovich
,
S.
, 1998,
Fuzzy Control
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.