This article addresses the optimal (minimum-time/energy) trajectory design for changing the output from one value y̱ to another y¯ within a finite time interval [0,tf] called the output-transition time interval. The output should be maintained constant (at the desired value) outside the output-transition time interval. The main contribution of this article is to establish the existence of a solution to the problem when preactuation (input applied during time t<0) and postactuation (input applied during time t>tf) are allowed. The advantage of using pre- and postactuation inputs is illustrated with an experimental dual-stage actuator system.

1.
Verriest
,
E.
, and
Lewis
,
F.
, 1991, “
On the Linear Quadratic Minimum-Time Problem
,”
IEEE Trans. Autom. Control
,
36
(
7
), pp.
859
863
. 0018-9286
2.
Alami
,
N.
,
Ouansafi
,
A.
, and
Znaidi
,
N.
, 1998, “
On the Discrete Linear Quadratic Minimum-Time Problem
,”
J. Franklin Inst.
,
335B
(
3
), pp.
525
532
. 0016-0032
3.
Gourdeau
,
R.
, and
Schwartz
,
H.
, 1989, “
Optimal Control of a Robot Manipulator Using a Weighted Time-Energy Cost Function
,”
Proceedings of the 29th IEEE Conference on Decision and Control
, Vol.
2
, pp.
1628
1631
.
4.
Perez
,
H.
, and
Devasia
,
S.
, 2003, “
Optimal Output-Transitions for Linear Systems
,”
Automatica
0005-1098,
39
(
2
), pp.
181
192
.
5.
Iamratanakul
,
D.
,
Jordan
,
B.
,
Leang
,
K. K.
, and
Devasia
,
S.
, 2008, “
Optimal Output Transitions for Dual-Stage Systems
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
869
881
. 1063-6536
6.
Hindle
,
T.
, and
Singh
,
T.
, 2001, “
Robust Minimum Power/Jerk Control of Maneuvering Structures
,”
J. Guid. Control Dyn.
,
24
(
4
), pp.
816
826
. 0731-5090
7.
Meckl
,
P.
, and
Kinceler
,
R.
, 1994, “
Robust Motion Control of Flexible Systems Using Feedforward Forcing Functions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
2
(
3
), pp.
245
254
.
8.
Pao
,
L.
, and
Singhose
,
W. E.
, 1998, “
Robust Minimum Time Control of Flexible Structures
,”
Automatica
0005-1098,
34
(
2
), pp.
229
236
.
9.
Devasia
,
S.
, 2007, “
Design of Feedforward Input for Output-Settling Control With Dual-Stage Actuators
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
670
679
. 1083-4435
10.
Isidori
,
A.
, 1995,
Nonlinear Control Systems
, 3rd ed.,
Springer-Verlag
,
London
.
11.
Anderson
,
B.
, and
Moore
,
J.
, 1990,
Linear Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Ortega
,
J.
, 1987,
Matrix Theory
,
Plenum
,
New York
.
13.
Naylor
,
A.
, and
Sell
,
G.
, 1982,
Linear Operator Theory in Engineering and Science
,
Springer-Verlag
,
New York
.
14.
Gupta
,
N.
, 1980, “
Frequency-Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods
,”
J. Guid. Control Dyn.
0731-5090,
3
(
6
), pp.
529
535
.
15.
Devasia
,
S.
, 2002, “
Should Model-Based Inverse Inputs be Used as Feedforward Under Plant Uncertainty?
IEEE Trans. Autom. Control
0018-9286,
47
(
11
), pp.
1865
1871
.
16.
Iamratanakul
,
D.
, 2007, “
Pre-Actuation and Post-Actuation in Control Applications
,” Ph.D. thesis, University of Washington, Seattle, WA.
You do not currently have access to this content.