This article addresses the optimal (minimum-time/energy) trajectory design for changing the output from one value to another within a finite time interval called the output-transition time interval. The output should be maintained constant (at the desired value) outside the output-transition time interval. The main contribution of this article is to establish the existence of a solution to the problem when preactuation (input applied during time ) and postactuation (input applied during time ) are allowed. The advantage of using pre- and postactuation inputs is illustrated with an experimental dual-stage actuator system.
Issue Section:
Technical Briefs
1.
Verriest
, E.
, and Lewis
, F.
, 1991, “On the Linear Quadratic Minimum-Time Problem
,” IEEE Trans. Autom. Control
, 36
(7
), pp. 859
–863
. 0018-92862.
Alami
, N.
, Ouansafi
, A.
, and Znaidi
, N.
, 1998, “On the Discrete Linear Quadratic Minimum-Time Problem
,” J. Franklin Inst.
, 335B
(3
), pp. 525
–532
. 0016-00323.
Gourdeau
, R.
, and Schwartz
, H.
, 1989, “Optimal Control of a Robot Manipulator Using a Weighted Time-Energy Cost Function
,” Proceedings of the 29th IEEE Conference on Decision and Control
, Vol. 2
, pp. 1628
–1631
.4.
Perez
, H.
, and Devasia
, S.
, 2003, “Optimal Output-Transitions for Linear Systems
,” Automatica
0005-1098, 39
(2
), pp. 181
–192
.5.
Iamratanakul
, D.
, Jordan
, B.
, Leang
, K. K.
, and Devasia
, S.
, 2008, “Optimal Output Transitions for Dual-Stage Systems
,” IEEE Trans. Control Syst. Technol.
, 16
(5
), pp. 869
–881
. 1063-65366.
Hindle
, T.
, and Singh
, T.
, 2001, “Robust Minimum Power/Jerk Control of Maneuvering Structures
,” J. Guid. Control Dyn.
, 24
(4
), pp. 816
–826
. 0731-50907.
Meckl
, P.
, and Kinceler
, R.
, 1994, “Robust Motion Control of Flexible Systems Using Feedforward Forcing Functions
,” IEEE Trans. Control Syst. Technol.
1063-6536, 2
(3
), pp. 245
–254
.8.
Pao
, L.
, and Singhose
, W. E.
, 1998, “Robust Minimum Time Control of Flexible Structures
,” Automatica
0005-1098, 34
(2
), pp. 229
–236
.9.
Devasia
, S.
, 2007, “Design of Feedforward Input for Output-Settling Control With Dual-Stage Actuators
,” IEEE/ASME Trans. Mechatron.
, 12
(6
), pp. 670
–679
. 1083-443510.
Isidori
, A.
, 1995, Nonlinear Control Systems
, 3rd ed., Springer-Verlag
, London
.11.
Anderson
, B.
, and Moore
, J.
, 1990, Linear Optimal Control
, Prentice-Hall
, Englewood Cliffs, NJ
.12.
Ortega
, J.
, 1987, Matrix Theory
, Plenum
, New York
.13.
Naylor
, A.
, and Sell
, G.
, 1982, Linear Operator Theory in Engineering and Science
, Springer-Verlag
, New York
.14.
Gupta
, N.
, 1980, “Frequency-Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods
,” J. Guid. Control Dyn.
0731-5090, 3
(6
), pp. 529
–535
.15.
Devasia
, S.
, 2002, “Should Model-Based Inverse Inputs be Used as Feedforward Under Plant Uncertainty?
” IEEE Trans. Autom. Control
0018-9286, 47
(11
), pp. 1865
–1871
.16.
Iamratanakul
, D.
, 2007, “Pre-Actuation and Post-Actuation in Control Applications
,” Ph.D. thesis, University of Washington, Seattle, WA.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.